首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This paper discusses the synthesis of biodiesel catalyzed by solid base of K2CO3/HT using Jatropha curcas oil as feedstock. Mg–Al hydrotalcite was prepared using co-precipitation methods, in which the molar ratio of Mg to Al was 3:1. After calcined at 600 °C for 3 h, the Mg–Al hydrotalcite and K2CO3 were grinded and mixed according to certain mass ratios, in which some water was added. The mixture was dried at 65 °C, and after that it was calcined at 600 °C for 3 h. Then, this Mg–Al hydrotalcite loaded with potassium carbonate was obtained and used as catalyst in the experiments. Analyses of XRD and SEM characterizations for catalyst showed the metal oxides formed in the process of calcination brought about excellent catalysis effect. In order to achieve the optimal technical reaction condition, five impact factors were also investigated in the experiments, which were mass ratio, molar ratio, reaction temperature, catalyst amount and reaction time. Under the best condition, the biodiesel yield could reach up to 96%.  相似文献   

2.
Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, and 75 °C) to determine the effect of synthesis temperature on the thermal stability of the Bayer hydrotalcite structures and the mineralogical phases that form. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; (1) Bayer hydrotalcite, (2), calcium carbonate species, and (3) hydromagnesite. The DTG curve can be separated into four decomposition steps; (1) the removal of adsorbed water and free interlayer water in hydrotalcite (30–230 °C), (2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250–400 °C), (3) the decarbonation of hydromagnesite (400–550 °C), and (4) the decarbonation of aragonite (550–650 °C).  相似文献   

3.
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3·3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793 °C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.  相似文献   

4.
In this work, a synthesis route of (Na,K)Mg/Al spinel-type compounds, which combines hydrothermal synthesis at low temperatures (<200 °C) and solid-state sintering (>800 °C) methods, is presented. It was examined that NaOH and KOH additives induce the reaction between initial Mg and Al components and the formation of hydrotalcite during hydrothermal treatment. It should be noted that after 1 h of calcination of synthetic precursors at 850 °C spinel-type compounds are formed only in the samples with alkali addition. Meanwhile in the pure system only traces of the mentioned compounds are observed at 900 °C. Moreover, the increase in solid-state sintering temperature and duration lead to the higher-crystallinity (Na,K)MgAl2O4 spinel-type compounds. It should be noted that textural properties of formed (Na,K)Mg/Al spinel-type compounds depend on the chemical composition of precursors. The synthetic and calcined products are characterised by XRD, STA, FT-IR analyses and BET method.  相似文献   

5.
The reaction mechanisms, phase development and kinetics of the hydrothermal synthesis of hexagonal-YMnO3 from Y2O3 and Mn2O3 using in situ X-ray diffraction are reported under different reaction conditions with temperatures ranging from 300 to 350 °C, and using 1, 5 and 10 m KOH, and 5 m NaOH mineraliser. Reactions initiated with Y2O3 hydrating to Y(OH)3, which then dehydrated to YO(OH). Higher temperatures and KOH concentrations led to faster, more complete dehydrations. However, 1 m KOH led to YO(OH) forming concurrently with Y(OH)3 before Y(OH)3 fully dehydrated but yielded a very low phase purity of hexagonal-YMnO3. Using NaOH mineraliser, no YO(OH) was observed. Dehydration also initiated at a higher temperature in the absence of Mn2O3. The evolution of Rietveld refined scale factors was used to determine kinetic information and approximate activation energies for the reaction. The described hydrothermal synthesis offers a fast, low-temperature method for producing anisometric h-YMnO3 particles.  相似文献   

6.
Differential thermal analysis was carried out on the self-propagating high-temperature synthesis reaction 3TiO2+4Al+3C→3TiC+2Al2O3. The results allow the ignition temperature of the reaction to be estimated and the reaction mechanism to be identified. The ignition temperature was 900°C and the results suggest that the reaction proceeds by an initial reaction between titania and aluminium (3TiO2+4Al→3Ti+2Al2O3) and the titanium formed reacts with the carbon (Ti+C→TiC).  相似文献   

7.
The effect of Cu/Al molar ratio on the high-temperature adsorption characteristics of CO2 on the mixed oxides of Cu–Al hydrotalcite skeletal structure has been studied by thermogravimetry. The Cu/Al molar ratio of the hydrotalcites synthesized was varied between 1.0 and 3.0, and the adsorption temperature ranged from ambient to 600 °C. The hydrotalcite with Cu/Al molar ratio of 2.0 was found to be the most suitable adsorbent for high-temperature CO2 adsorption, in both the capacity and the rate of adsorption. The activation energy values suggested that the physical adsorption dominates at low temperatures (<400 °C) and the chemisorption dominates at high temperatures (>400 °C).  相似文献   

8.
The removal of the sulfate anion from water using synthetic hydrotalcite (Mg/Al LDH) was investigated using powder X-ray diffraction (XRD) and thermogravimetric analysis (TG). Synthetic hydrotalcite Mg6Al2(OH)16(CO3)·4H2O was prepared by the co-precipitation method from aluminum and magnesium chloride salts. The synthetic hydrotalcite was thermally activated to a maximum temperature of 380 °C. Samples of thermally activated hydrotalcite where then treated with aliquots of 1000 ppm sulfate solution. The resulting products where dried and characterized by XRD and TG. Powder XRD revealed that hydrotalcite had been successfully prepared and that the product obtained after treatment with sulfate solution also conformed well to the reference pattern of hydrotalcite. The d(003) spacing of all samples was found to be within the acceptable region for a LDH structure. TG revealed all products underwent a similar decomposition to that of hydrotalcite. It was possible to propose a reasonable mechanism for the thermal decomposition of a sulfate containing Mg/Al LDH. The similarities in the results may indicate that the reformed hydrotalcite may contain carbonate anion as well as sulfate. Further investigation is required to confirm this.  相似文献   

9.
Selective production of hydrogen by oxidative steam reforming of methanol (OSRM) was studied over Cu/SiO2 catalyst using fixed bed flow reactor. Textural and structural properties of the catalyst were analyzed by various instrumental methods. TPR analysis illustrates that the reduction temperature peak was observed between 510?K and 532?K at various copper loadings and calcination temperatures and the peaks shifted to higher temperature with increasing copper loading and calcination temperature. The XRD and XPS analysis demonstrates that the copper existed in different oxidation states at different conditions: Cu2O, Cu0, CuO and Cu(OH)2 in uncalcined sample; CuO in calcined sample: Cu2O and metallic Cu after reduction at 600?K and Cu0 and CuO after catalytic test. TEM analysis reveals that at various copper loadings, the copper particle size is in the range between 3.0?nm and 3.8?nm. The Cu particle size after catalytic test increased from 3.6 to 4.8?nm, which is due to the formation of oxides of copper as evidenced from XRD and XPS analysis. The catalytic performance at various Cu loadings shows that with increasing Cu loading from 4.7 to 17.3?wt%, the activity increases and thereafter it decreases. Effect of calcination shows that the sample calcined at 673?K exhibited high activity. The O2/CH3OH and H2O/CH3OH molar ratios play important role in reaction rate and product distribution. The optimum molar ratios of O2/CH3OH and H2O/CH3OH are 0.25 and 0.1, respectively. When the reaction temperature varied from 473 to 548?K, the methanol conversion and H2 production rate are in the range of 21.9–97.5% and 1.2–300.9?mmol?kg?1?s?1, respectively. The CO selectivity is negligible at these temperatures. Under the optimum conditions (17.3?wt%, Cu/SiO2; calcination temperature 673?K; 0.25 O2/CH3OH molar ratio, 0.5 H2O/CH3OH molar ratio and reaction temperature 548?K), the maximum hydrogen yield obtained was 2.45?mol of hydrogen per mole of methanol. The time on stream stability test showed that the Cu/SiO2 catalyst is quite stable for 48?h.  相似文献   

10.
Zn-Al hydrotalcites and Cu-Al hydrotalcites were synthesised by coprecipitation method and analysed by X-ray diffraction (XRD) and thermal analysis coupled with mass spectroscopy. These methods provide a measure of the thermal stability of the hydrotalcite. The XRD patterns demonstrate similar patterns to that of the reference patterns but present impurities attributed to Zn(OH)2 and Cu(OH)2. The analysis shows that the d003 peak for the Zn-Al hydrotalcite gives a spacing in the interlayer of 7.59 ? and the estimation of the particle size by using the Debye-Scherrer equation and the width of the d003 peak is 590 ?. In the case of the Cu-Al hydrotalcite, the d003 spacing is 7.57 ? and the size of the diffracting particles was determined to be 225 ?. The thermal decomposition steps can be broken down into 4 sections for both of these hydrotalcites. The first step decomposition below 100°C is caused by the dehydration of some water absorbed. The second stage shows two major steps attributed to the dehydroxylation of the hydrotalcite. In the next stage, the gas CO2 is liberated over a temperature range of 150°C. The last reactions occur over 400°C and involved CO2 evolution in the decomposition of the compounds produced during the dehydroxylation of the hydrotalcite.  相似文献   

11.
The influence of principal parameters (reaction temperature, ratio of acetic acid and ammonia, composition of reactionary mixture and promotion of catalysts) on the selectivity and yield of the desired product was studied in the reaction of catalytic acetonitrile synthesis by ammonolysis of acetic acid. The processing of γ-Al2O3 by phosphoric acid increases amount of the centers, on which carries out reaction of acetamide dehydration. The kinetic model of a limiting stage of reaction – the acetamide dehydration to acetonitrile was suggested. In the process of ammonolysis of acetic acid it was demonstrated that the use of catalysts promoted by phosphoric acid and ratio NH3:CH3COOH=(3-4):1 at temperatures of a reactor 360-390°С leads to the increase of acetonitrile productivity to 0.7-0.8 g/cm3·h and allows to minimize formation of by-products.  相似文献   

12.
Preparatory for the synthesis of terminally functional polyisobutylenes carrying one or two phenyl end groups, model experiments have been carried out using novel tert-butyl chloride/triphenylaluminum and 2,6-dichloro-2,6-dimethylheptane/triphenylaluminum initiating systems. As anticipated, t-BuCl was phenylated by ø3Al and the product is tert-butylbenzene. The reaction is extremely rapid and temperature has little effect on it in the 0 to ?60°C range. The interaction between the 2,6-dichloro-2,6-dimethylheptane and ø3Al was found to be complicated by a proximity effect which leads to proton elimination in addition to phenylation. The formation of the desired diterminally phenylated product is not quanititative even at ?60°C.  相似文献   

13.
Treatment of Mg–Al hydrotalcites (LDHs, layered double hydroxides) in aqueous (NH4)2CO3 at 298 K leads to composites of dawsonite, hydrotalcite, and magnesium ammonium carbonate. The mechanism and kinetics of this transformation, ultimately determining the relative amounts of these components in the composite, depend on the treatment time (from 1 h to 9 days), the Mg/Al ratio in the hydrotalcite (2-4), and on the starting layered double hydroxide (solid or delaminated form). The materials at various stages of the treatment were characterized by inductive coupled plasma-optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetry, and nitrogen adsorption at 77 K. The progressive transformation of hydrotalcite towards crystalline dawsonite and magnesium ammonium carbonate phases follows a dissolution–precipitation mechanism. A gradual decrease of the Mg/Al ratio in the resulting solids was observed in time due to magnesium leaching in the reacting medium. Dawsonite–hydrotalcite composite formation is favored at high aluminum contents in the starting hydrotalcite, while the formation of magnesium ammonium carbonate is favored at high Mg/Al ratios. The synthetic strategy comprising hydrotalcite delamination in formamide prior to aqueous (NH4)2CO3 treatment is more reactive towards composite formation than starting from the bulk solid hydrotalcite.  相似文献   

14.
12‐Hydroxydodecanoate (HD) anions were intercalated, via an ion‐exchange procedure, onto a Mg/Al hydrotalcite‐like compound with the formula [Mg0.65Al0.35(OH)2](NO3)0.35·0.56H2O. The obtained intercalate, characterized by chemical and thermal analyses, X‐ray powder diffraction, and Fourier transform infrared spectroscopy, had the formula [Mg0.65Al0.35(OH)2](NO3)0.08(HD)0.28·0.56H2O and an interlayer distance of 2.27 nm. Structural considerations indicated that the charge‐balancing HO? (CH2)11? COO? anions were accommodated in the interlayer region as a monofilm of partially interdigitated alkyl chains in a trans planar conformation and bearing the alcoholic group. The organically modified hydrotalcite was used to prepare novel composites based on poly(?‐caprolactone) (PCL) with different procedures: (1) solvent casting, (2) ring‐opening polymerization of ?‐caprolactone, and (3) blending of precursors consisting of a PCL intercalated oligomer with a high‐molecular‐weight PCL. Microcomposites were obtained by the solvent casting of a mixture of a high‐molecular‐weight PCL and the modified hydrotalcite. The ring‐opening polymerization of ?‐caprolactone initiated by the ? OH groups of the alkyl chains intercalated in the hydrotalcite led to hybrid materials in which a low‐molecular‐weight PCL was in part intercalated into the modified hydrotalcite. Nanocomposites containing exfoliated hydrotalcite were obtained through the mixing, in different weight ratios, of hybrids consisting of PCL oligomers and modified hydrotalcite with a commercial high‐molecular‐weight PCL. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2281–2290, 2005  相似文献   

15.
AlF3 solution (150 g/l) reacts with Al(OH)3 in the m.ratio 2:1 in excess of ca. 115°C to produce Al(OH,F)3.H2O with an F/Al at. ratio > 2. At lower temperatures, e.g. 110°C, or at higher reactants ratios, e.g. 3-11, formation of Al(OH,F)3.H2O may be accompanied by crystallization of AlF3-hydrates as AlF3.3H2O and/or /gb-AlF3.H2O. When crystallization of β - AlF3.H2O occurs to a greater extent, Al(OH,F)3.H2O may vary in its F/Al at.ratio from ca. 2.5 to 1, during the reaction.Al(OH)F2.H2O reacts readily with NaOH, NaF and NH4F solutions to give sodium and ammonium cryolite. Reactions with NaHF2 and H2SiF6 were unsuccessful, while with AlF3 solution an increase of the F/Al ratio in the Al basic fluoride used resulted.  相似文献   

16.
Abstract

Thermal synthesis of sodium cyclotriphosphate (SCTP) – Na3P3O9 was investigated in the temperature range of 150 °C to 750 °C using sodium chloride (NaCl) and 85 wt% orthophosphoric acid (H3PO4) as economical starting materials. Reaction temperature had a crucial impact on the chloride elimination rate and the formation of SCTP. The best result was obtained at 600 °C with 96% of elimination of the initial chloride as hydrochloric acid and 84% of selectivity in SCTP. At lower temperatures, residual chloride contents were high. At higher temperatures (650 °C and 750 °C), SCTP was melted and transformed into glassy products.  相似文献   

17.
Acid–base bi-functional hydrotalcite like compounds based on partial incorporation of Al3+ into brucite structure of Mg(OH)2 with various molar ratios were prepared through co-precipitation method. The co-precipitation of the precursors produced precipitations followed by drying at 120 °C for 12 h and calcination in air flow at 500 °C for 6 h to obtain the catalysts (Mg–Al HLCs). Many techniques including XRD, TG–DTA, EDX, NH3-TPD, CO2-TPD, GC–MS and XANES were used to characterize and optimize Mg/Al molar ratio based on the thermal stability of the Mg–Al HLCs and their activities in decarboxylation process of coconut oil. The results showed that the best molar ratio of Mg/Al was 3/1 providing a stable hydrotalcite like structure, and the catalyst possessed both acid and base sites on its surface enhancing its activity and selectivity in the decarboxylation process. The catalysts revealed high performance in the decarboxylation process of coconut oil established at 400 °C for 4 h for green hydrocarbons belonging to kerosene fractions.  相似文献   

18.
Dawsonite-type compounds of formula MAl(OH)2CO3 (M=Na,K,NH4) were hydrothermally synthesized. The influences of the composition of starting materials, reaction temperature, acidity of the reaction medium on the formation, morphology and particle size of MAl(OH)2CO3 powders were systematically investigated. The experiment results show that increase in the amount of MHCO3 favors the formation of MAl(OH)2CO3 phase with more slender particle morphology. The higher the reaction temperature, the grosser the particle is. It was also demonstrated that the particle size of the MAl(OH)2CO3 phase are most uniform when the pH value of reaction system is 10.3 for sodium dawsonite and potassium dawsonite, but it is 9.79 for that of ammonium dawsonite. The thermodynamics of the formation of dawsonite-type compounds have also been analyzed in details.  相似文献   

19.
 摘要:用水热合成法制备了锰取代的六铝酸盐催化剂,并比较了超临界干燥法和普通烘箱干燥法对催化剂结构及甲烷燃烧反应活性的影响.DTA-MS结果表明,超临界干燥过程中,催化剂前驱物中的表面铝羟基部分被乙氧基取代.这种表面修饰作用可保持铝分散的均匀性,使催化剂前驱物中碳酸锰和碳酸镧的分解温度明显降低,且氢氧化铝的脱水温度维持在较适宜的范围内;焙烧后,易形成六铝酸盐相.甲烷燃烧反应结果表明,用超临界干燥方法制得的催化剂对甲烷燃烧反应的催化活性明显高于用普通烘箱干燥方法制得的催化剂.  相似文献   

20.
The hydrothermal synthesis of analcime (ANA) with N,N′‐dibenzyl‐N,N,N′,N′‐tetramethylethylenediamine (DBTMED) as template was systematically studied. The various parameters that affect the crystallization of analcime, such as temperature, time, Al source, and Si/Al ratio were investigated. Systematic variations of these parameters revealed that ANA was obtained from the reaction mixture with the optimized ratios of SiO2/Al2O3 = 5–9.5 in presence of DBTMED, whereas template‐free clear solution methods require SiO2/Al2O3 ratio of greater than 25. When experiments were conducted at 130 and 150 °C for 4 days, a mixture of analcime and zeolite P was present in the samples, and a pure analcime sample could be obtained with heating in the temperature range 160–180 °C. When microwave and conventional heating were used, analcime could be obtained after 2 days. The obtained products were characterized by XRD, SEM, and IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号