首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition mechanisms and the intermediate morphology of MgCl2·6H2O and MgCl2·H2O were studied using integrated thermal analysis, X-ray diffraction, scanning electron microscope and chemical analysis. The results showed that there were six steps in the thermal decomposition of MgCl2·6H2O: producing MgCl2·4H2O at 69 °C, MgCl2·2H2O at 129 °C, MgCl2·nH2O (1 ≤ n ≤ 2) and MgOHCl at 167 °C, the conversion of MgCl2·nH2O (1 ≤ n ≤ 2) to Mg(OH)Cl·0.3H2O by simultaneous dehydration and hydrolysis at 203 °C, the dehydration of Mg(OH)Cl·0.3H2O to MgOHCl at 235 °C, and finally the direct conversion of MgOHCl to the cylindrical particles of MgO at 415 °C. To restrain the sample hydrolysis and to obtain MgCl2·H2O, MgCl2·6H2O was first calcined in HCl atmosphere until 203 °C when MgCl2·H2O was obtained; HCl gas was then turned off and the calcination process continued, producing Mg3Cl2(OH)4·2H2O calcined at 203 °C, Mg3(OH)4Cl2 at 220 °C and MgO at 360 °C. The temperature of producing MgO from calcination of MgCl2·H2O was lower (360 °C) than that from MgCl2·6H2O (415 °C) because of its more reactive intermediate products: the irregular shape and tiny needle-like Mg3Cl2(OH)4·2H2O particles and the uneven surface porous Mg3(OH)4Cl2 particles. The MgO particles obtained at 360 °C had a flake structure.  相似文献   

2.
A pure calcium borate Ca2[B2O4(OH)2]·0.5H2O has been synthesized under hydrothermal condition and characterized by XRD, FT-IR and TG as well as by chemical analysis. The molar enthalpy of solution of Ca2[B2O4(OH)2]·0.5H2O in HC1·54.582H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HC1·54.561H2O and of CaO in (HCl + H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s) and H2O(l), the standard molar enthalpy of formation of −(3172.5 ± 2.5) kJ mol−1 of Ca2[B2O4(OH)2]·0.5H2O was obtained.  相似文献   

3.
A new magnesium borate MgO·3B2O3·3.5H2O has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B6O9(OH)2]·2.5H2O. The enthalpy of solution of MgO·3B2O3·3.5H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5595.02±4.85) kJ mol−1 of MgO·3B2O33.5H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

4.
A new magnesium borate, β-2MgO·3B2O3·17H2O, has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR, and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B3O3(OH)5]·6H2O. The enthalpy of solution of β-2MgO·3B2O3·17H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(10256.39±4.93) kJ mol−1 of β-2MgO·3B2O3·17H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

5.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

6.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

7.
Solid-liquid equilibria in the C12H22O11-Ca(OH)2-H2O system have been determined at 30 °C. Two phases C12H22O11·3Ca(OH)2 and C12H22O11·2Ca (OH)2 have been evidenced, and solubility (liquidus) curves have been determined. It is thus shown that these ternary phases exhibit incongruent solubilities at 30 °C. These solid phases were characterized using Infrared Spectroscopy (IR), Scanning Electron Microscopy (SEM) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).  相似文献   

8.
MgF2 nanorods with diameters of 60-100 nm were synthesized by a microemulsion method. Subsequent hydrothermal reaction of as-synthesized MgF2 nanorods and KF at 240°C for 3 days or 140°C for 7 days resulted in KMgF3 nanorods, which retained the rod-like morphology of the source material MgF2 in the reaction process. The morphology of as-synthesized MgF2 strongly depended on the molar ratio between water and the surfactant CTAB and the concentration of CTAB.  相似文献   

9.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

10.
The synthesis of Mg(OH)2 one-dimensional (1D) nanostructures was systematically investigated in different solvents at various temperatures with Mg10OH18Cl2·5H2O nanowires as source materials. The results showed that the characters of the products, such as crystal size, shape, and structure, were strongly influenced by the solvent and temperature during the solvothermal process. 1D nanotubes of Mg(OH)2, with 80-300 nm outer diameter, 30-80 nm wall thickness, and several tens of micrometers in length were obtained by choosing bidentate ligand solvents such as ethylenediamine and 1,6-diaminohexane as the reaction solvent. But when using monodentate ligand pyridine as the reaction solvent, the obtained samples showed nanorods morphology. The Mg(OH)2 thus produced was analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), and selected-area electron diffraction (SAED). The possible growth mechanism of the 1D nanostructure Mg(OH)2 was discussed.  相似文献   

11.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

12.
A complex of holmium perchlorate coordinated with l-glutamic acid, [Ho2(l-Glu)2(H2O)8](ClO4)4·H2O, was prepared with a purity of 98.96%. The compound was characterized by chemical, elemental and thermal analysis. Heat capacities of the compound were determined by automated adiabatic calorimetry from 78 to 370 K. The dehydration temperature is 350 K. The dehydration enthalpy and entropy are 16.34 kJ mol−1 and 16.67 J K−1 mol−1, respectively. The standard enthalpy of formation is −6474.6 kJ mol−1 from reaction calorimetry at 298.15 K.  相似文献   

13.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

14.
Hydrothermal synthesis in the M/Mo/O (M=Co,Ni) system was investigated. Novel transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni), having an interesting pillared layer structure, were found. The molybdates crystallize in the triclinic system with space group P−1, Z=1 with unit cell parameters of a=5.525(3) Å, b=7.058(4) Å, c=7.551(5) Å, α=90.019(10)°, β=105.230(10)°, γ=90.286(10)° for CoMo4O13·2H2O, and a=5.508(2) Å, b=7.017(3) Å, c=7.533(3) Å, α=90.152(6)°, β=105.216(6)°, γ=90.161(6)° for NiMo4O13·2H2O The structure is composed of two-dimensional molybdenum-oxide (2D Mo-O) sheets pillared with CoO6 octahedra. The 2D Mo-O sheet is made up of infinite straight ribbons built up by corner-sharing of four molybdenum octahedra (two MoO6 and two MoO5OH2) sharing edges. These infinite ribbons are similar to the straight ones in triclinic-K2Mo4O13 having 1D chain structure, but are linked one after another by corner-sharing to form a 2D sheet structure, like the twisted ribbons in BaMo4O13·2H2O (or in orthorhombic-K2Mo4O13) are.  相似文献   

15.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

16.
The layered LiNi1/3Co1/3Mn1/3O2−zFz (0 ≤ z ≤ 0.12) cathode materials were synthesized from oxalate precursors by a simple self-propagating solid-state metathesis method with the help of the ball milling and the following calcination. Li(Ac)·2H2O, Ni(Ac)2·4H2O, Co(Ac)2·4H2O, Mn(Ac)2·4H2O(Ac = acetate), LiF and excess H2C2O4·2H2O were used as starting materials without any solvent. The structural and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2−zFz were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements, respectively. The XRD patterns indicate that all samples have a typical hexagonal structure with a space group of . The FESEM images show that the primary particle size of LiNi1/3Co1/3Mn1/3O2−zFz gradually increases with increasing fluorine content. Though the fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz have lower initial discharge capacities, a small amount of fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz (z = 0.04 and 0.08) exhibit excellent cycling stability and rate capability compared to fluorine-free LiNi1/3Co1/3Mn1/3O2.  相似文献   

17.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

18.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

19.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

20.
DMAP was found to accelerate significantly the rate of Pd(OAc)2 catalyzed Barbier type allylation of carbonyl compounds by allylbromide using SnCl2·2H2O as reducing agent. Both aldehyde as well as ketones produced excellent yields within a short reaction time in the presence of 3 mol % of Pd(OAc)2 and 12 mol % of DMAP at room temperature. Aldehydes could be allylated within 5–10 min whereas, in case of ketones, the reaction completes in 45–120 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号