首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
The molecular structure and rotational motion of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) were studied over a wide temperature range using the Bloembergen–Purcell–Pound 13C NMR spin–lattice relaxation method and NOE factors. Examination of the spin–lattice relaxation times (T 1) and the rates (R 1=1/T 1) of the 1-butyl-3-methylimidazolium cation reveals the relative motions of each carbon in the imidazolium cation. The rotational characteristics of the [BMIM] cation are supported by ab-initio molecular structures of [BMIM][PF6] using density functional theory (DFT) and Hartree–Fock (HF) methods. The ab-initio gas phase structures of [BMIM][PF6] indicate that the 1-butyl-3-methylimidazolium C2 hydrogen, the ring methyl group, and the butyl side-chain hydrogen atoms form hydrogen bonds with the hexafluorophosphate anion.  相似文献   

3.
We present in this work the first molecular simulation study of an enzyme, the serine protease cutinase from Fusarium solani pisi, in two ionic liquids (ILs): 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO(3)]). We tested different water contents in these ILs at room temperature (298 K) and high temperature (343 K), and we observe that the enzyme structure is highly dependent on the amount of water present in the IL media. We show that the enzyme is preferentially stabilized in [BMIM][PF6] at 5-10% (w/w) (weight of water over protein) water content at room temperature. [BMIM][PF6] renders a more nativelike enzyme structure at the same water content of 5-10% (w/w) as previously found for hexane, and the system displays a similar bell-shape-like dependence with the water content in the IL media. [BMIM][PF6] is shown to increase significantly the protein thermostability at high temperatures, especially at low hydration. Our analysis indicates that the enzyme is less stabilized in [BMIM][NO(3)] relative to [BMIM][PF6] at both temperatures, most likely due to the strong affinity of the [NO(3)]- anion toward the protein main chain. These findings are in accordance with the experimental knowledge for these two ionic liquids. We also show that these ILs "strip off" most of the water from the enzyme surface in a degree similar to that found for polar organic solvents such as acetonitrile, and that the remaining waters at the enzyme surface are organized in many small clusters.  相似文献   

4.
We investigated the structures of ionic liquids (1-butyl-3-methylimidazolium iodide [BMIM][I] and 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]) and their aqueous mixtures using attenuated total reflection (ATR) infrared absorption and Raman spectroscopy. The ATR spectrum in the CHx (x = 1, 2, 3) vibration region from 2800 to 3200 cm-1 was very different between [BMIM][BF4] and [BMIM][I] even though all the spectral features in this region were from the butyl chain and the imidazolium ring of the same cation. The spectrum did not change appreciably irrespective of the water concentration for [BMIM][BF4], whereas the spectrum from [BMIM][I] showed significant changes as the water concentration was increased, especially in CH-vibration modes from the imidazolium ring. For very diluted solutions both aqueous mixtures of [BMIM][I] and [BMIM][BF4] showed very similar spectra. Mixing of [BMIM][I] with heavy water (D2O) facilitated the isotopic exchange of the proton attached to the most acidic carbon of the imidazolium ring into deuterium from D2O, whereas even prolonged exposure to D2O did not induce any isotopic exchange for [BMIM][BF4]. Raman spectra around 600 cm(-1) indicative of the butyl chain conformation also changed differently as the water concentration was increased between [BMIM][I] and [BMIM][BF4]. These differences are considered to come from the variation in the position of the anion, where I- is expected to be closer to the C(2) hydrogen of the imidazolium cation and interacting more specifically as compared to BF(4-).  相似文献   

5.
Russian Journal of Physical Chemistry A - This work aimed to investigate the structural and dynamical properties of ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])...  相似文献   

6.
The surface tensions were measured at atmospheric pressure, with use of a ring tensiometer, of a series of alcoholic solutions of closely related ionic liquids: 1-methyl-3-methylimidazolium methylsulfate, [MMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium methylsulfate, [BMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in alcohol (methanol, or 1-butanol at 298.15 K) and of 1-hexyloxymethyl-3-methylimidazolium tetrafluoroborate, [C6H(13)OCH2MIM][BF4], 1,3-dihexyloxymethylimidazolium tetrafluoroborate, [(C6H13OCH2)2IM][BF4] in alcohol (methanol, or 1-butanol, or 1-hexanol at 308.15 and 318.5 K) and hexyl(2-hydroxyethyl)dimethylammonium bromide, C6Br in 1-octanol at 298.15 K. The set of ammonium ionic liquids of different cations and anions (C2Br, C2BF4, C2PF6, C2N(CN)2, C3Br, C4Br and C6Br) was chosen to show the influence of small amount of the ammonium ionic liquid on the surface tension of water at 298.15 K. The influence of the cation, or anion alkyl chain length on the properties under study (densities and surface tension) was tested.  相似文献   

7.
A united-atom model of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO(3)]) is developed in the framework of the GROMOS96 43A1(1) force field. These two ionic liquids are parametrized, and their equilibrium properties in the 298-363 K temperature range are subjected to validation against known experimental properties, namely, density, self-diffusion, shear viscosity, and isothermal compressibility. The ionic radial/spatial distributions, pi interaction, gauche/trans populations of the butyl tail, and enthalpies of vaporization are also reported. The properties obtained from the molecular dynamics simulations agree with experimental data and have the same temperature dependence. The strengths and weakness of our model are discussed.  相似文献   

8.
Sum frequency generation spectroscopy, SFG, was used for the surface characterization at the gas-liquid interface of the 1-butyl-3-methylimidazolium cation combined with the following anions: Br-, I-, PF6-, BF4-, (CF3SO2)2N- (imide), SCN-, CH3SO3- (MeSO3), CH3SO4- (MS), and (CN)2N- (DCN). The SFG spectra obtained for the different ionic liquids were similar independent of the anion selected; therefore, a comprehensive analysis for the surface characterization of the ionic liquids' cation was focused only on the PF6- and Br- anion combinations. For an accurate identification of the vibrational modes observed, FT-IR and Raman spectroscopy in combination with isotopic labeling with deuterium and polarized Raman spectroscopy was used. The cation orientation was determined by analysis of polarization-dependent SFG spectra. For a compound dried in a vacuum to < or = 2 x 10(-5) Torr, the cation appears to be oriented with the ring laying flat along the surface plane and the butyl chain projecting into the gas phase independent of the anion identity.  相似文献   

9.
ABSTRACT

The present work is devoted to the thermochemical study of solvation of ionic liquids (IL) in benzene. The solution enthalpies of 1-ethyl-3-methylimidazolium tricyanomethanide [EMIM][C(CN)3], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][TfO] in benzene were measured. The solvation enthalpies of imidazolium-based IL were calculated. Molar refractions of imidazolium-based IL form literature data on density and refractive indexes of IL were also calculated. The linear correlation between solvation enthalpy and molar refraction of IL was observed. This correlation can be used to calculate the vaporization enthalpy of imidazolium-based IL from solution calorimetry data.  相似文献   

10.
X-ray diffraction measurements for 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid ([BMIM][PF6])-CO2 systems were carried out at high pressures with a newly developed polymer cell. The intermolecular distribution functions (g(inter)(r)) were obtained at 25 degrees C for neat [BMIM][PF6] and its solutions saturated with CO2 at 4 and 15 MPa, where the mole fractions (x) of CO2 correspond to 0.5 and 0.7, respectively. In g(inter)(r) for x = 0.5, two peaks appeared at around 2.8 and 3.2 A. These two peaks in g(inter)(r) appreciably increased for x = 0.7; moreover, there was another peak observed at approximately 3.8 A. Only assuming the correlations between CO2 and [PF6]-, it is reasonably determined that the nearest-neighbor P([PF6]-). . .C(CO2) distances are 3.57 and 3.59 A with the coordination numbers being 1.8 and 4.0 for x = 0.5 and 0.7, respectively. It is concluded that CO2 molecules are preferentially solvated to the [PF6]- anion.  相似文献   

11.
Research on Chemical Intermediates - Thermochemical conversion of guaifenesin was performed in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] ionic liquid at...  相似文献   

12.
Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.  相似文献   

13.
Four amphiphilic poly((1,2-butadiene)-block-ethylene oxide) (PB-PEO) diblock copolymers were shown to aggregate strongly and form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]). The universal micellar structures (spherical micelle, wormlike micelle, and bilayered vesicle) were all accessed by varying the length of the corona block while holding the core block constant. The nanostructures of the PB-PEO micelles formed in an ionic liquid were directly visualized by cryogenic transmission electron microscopy (cryo-TEM). Detailed micelle structural information was extracted from both cryo-TEM and dynamic light scattering measurements, with excellent agreement between the two techniques. Compared to aqueous solutions of the same copolymers, [BMIM][PF(6)] solutions exhibit some distinct features, such as temperature-independent micellar morphologies between 25 and 100 degrees C. As in aqueous solutions, significant nonergodicity effects were also observed. This work demonstrates the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid, with potential applications in many arenas.  相似文献   

14.
利用X射线吸收精细结构光谱(XAFS)及紫外吸收光谱两种方法, 分析了离子液体1-丁基-3-甲基咪唑溴盐([BMIM]Br)中逐渐掺入1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])时, Br-阴离子与咪唑阳离子之间氢键作用及电荷偏移量的改变. 随着[BMIM][BF4]加入量增多, Br 元素XAFS近边(XANES)显示吸收峰降低, 吸收边位置向低能端位移0.9 eV; 扩展边(EXAFS)算出径向结构显示Br 与近邻原子间平均配位数降低、平均键长增长; 紫外光谱也有明显蓝移减色效应. 这些结果都表明Br4-的掺入改变了Br-与阳离子间的电荷偏移量, 负电荷更多地转移到Br-上, 量化计算的数据同样支持该结论.  相似文献   

15.
The orientation of the cation and the anion of room-temperature ionic liquids using sum frequency generation vibrational spectroscopy is reported. The ionic liquids are based on butyl-methyl imidazolium [BMIM]+ and hexyl-tributyl ammonium [N6444]+ together with dicyanamide [DCA]- as the anion. The tilt angle of the C3 axis of the methyl group from the alkyl chain in the cations was found to vary from 52 degrees to 80 degrees as a function of the distribution width sigma (which ranges from 0 degrees to 30 degrees with respect to the surface normal) for [BMIM][DCA] and similarly for [N6444][DCA]. The orientation of the C2 axis in the dicyanamide anion as a function of the twist angle phi, varied between 46 degrees and 90 degrees for [BMIM][DCA] and from 53 degrees to 90 degrees for [N6444][DCA]. These results suggest the presence of both ionic species at the gas-liquid interface and help describe the behavior of a simple inorganic anion at the surface.  相似文献   

16.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

17.
The steady-state fluorescence spectra and molecular dynamics simulations were explored to investigate the temperature dependent organization in some imidazolium ionic liquids:1-butyl-3-methylimidazolium hexafluo-rophosphate([bmim][PF6]),1-ethyl-3-methylimidazolium ethylsulfate([emim][EtSO4]) and 1-butyl-3-methylimida-zolium tetrafluoroborate([bmim][BF4]).The pure room temperature ionic liquids(ILs) exhibit a large red shift at more than an excitation wavelength of around 340 nm,which demonstrates the hetero...  相似文献   

18.
We have studied polydimethylsiloxane (PDMS)-in-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) Pickering emulsions stabilized by polystyrene microparticles with different surface chemistry. Surprisingly, in contrast to the consensus originating from oil/water Pickering emulsions in which the solid particles equilibrate at the oil-water droplet interfaces and provide effective stabilization, here the polystyrene microparticles treated with sulfate, aldehyde sulfate, or carboxylate dissociable groups mostly formed monolayer bridges among the oil droplets rather than residing at the oil-ionic liquid interfaces. The bridge formation inhibited individual droplet-droplet coalescence; however, due to low density and large volume (thus the buoyant effect), the aggregated oil droplets actually promoted oil/ionic liquid phase separation and distressed emulsion stability. Systems with binary heterogeneous polystyrene microparticles exhibited similar, even enhanced (in terms of surface chemistry dependence), bridging phenomenon in the PDMS-in-[BMIM][PF(6)] Pickering emulsions.  相似文献   

19.
A headspace single drop microextraction (SDME) method using extraction solvents comprised of micellar ionic liquids (ILs) was used to perform the extraction of 17 aromatic compounds from aqueous solution and coupled with liquid chromatography. The effects of various experimental parameters including type of micellar IL extraction solvent, stir rate, extraction time, volume of the microdroplet, and addition of organic solvent were investigated and optimized. Two different micellar solutions were formed by dissolving 1-decyl-3-methylimidazolium bromide ([DMIM][Br]) and sodium dodecyl sulfate (SDS) in 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). It was observed that the enrichment factors of the 17 studied compounds were all enhanced with the micellar ionic liquid extraction solvent compared to the neat [BMIM][Cl] IL. The highest sensitivity was obtained with the [BMIM][Cl]–[DMIM][Br] micellar solution for polycyclic aromatic hydrocarbons (PAHs) with high molecular weight and fused rings while the [BMIM][Cl]–SDS micellar solution was proven to be more sensitive for smaller, more polar molecules. The detection limits were lower when utilizing the [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] extraction solvents compared to the neat [BMIM][Cl] extraction solvent. The reproducibility of the extraction method at 20 °C using extraction solvents composed of [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] ranged from 6.7 to 14.0 and 4.2 to 14.7%, respectively.  相似文献   

20.
The orientation of the cation and the anion of 1-butyl-3-methylimidazolium dicyanamide at the platinum-liquid interface, using sum frequency generation (SFG) spectroscopy is reported. Sum frequency spectra at two different polarizations and different potentials are recorded, and analysis of polarization-dependent spectra is performed to estimate the orientation of the dicyanamide anion and the alkyl and ring moieties in the cation as a function of the potential applied to the platinum electrode. In addition, cyclic voltammetry and electrochemical impedance spectroscopy are conducted. A model of the double-layer structure at the electrified interface is presented from the analysis of capacitance and SFG data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号