首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) have been determined using solid-state electrochemical technique employing oxide ion conducting electrolyte. The reversible electromotive force (e.m.f.) of the following solid-state electrochemical cells have been measured:
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) from elements in their standard state, calculated by the least squares regression analysis of the data obtained in the present study, can be given, respectively, by:
The uncertainty estimates for Δf G o(T) include the standard deviation in e.m.f. and uncertainty in the data taken from the literature.  相似文献   

2.
The standard Gibbs energy of formation of Pr2TeO6 $ (\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)) $ was derived from its vapour pressure in the temperature range of 1,400–1,480 K. The vapour pressure of TeO2 (g) was measured by employing a thermogravimetry-based transpiration method. The temperature dependence of the vapour pressure of TeO2 over the mixture Pr2TeO6 (s) + Pr2O3 (s) generated by the incongruent vapourization reaction, Pr2TeO6 (s) = Pr2O3 (s) + TeO2 (g) + ½ O2 (g) could be represented as: $ { \log }\left\{ {{{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} \mathord{\left/ {\vphantom {{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} {{\text{Pa}} \pm 0.0 4}}} \right. \kern-0em} {{\text{Pa}} \pm 0.0 4}}} \right\} = 19. 12- 27132\; \left({\rm{{{\text{K}}}}/T} \right) $ . The $ \Updelta_{\text{f}} G^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ could be represented by the relation $ \left\{ {{{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} \mathord{\left/ {\vphantom {{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} \pm 5.0} \right\} = - 2 4 1 5. 1+ 0. 5 7 9 3\;\left(T/{\text{K}}\right) .$ Enthalpy increments of Pr2TeO6 were measured by drop calorimetry in the temperature range of 573–1,273 K and heat capacity, entropy and Gibbs energy functions were derived. The $ \Updelta_{\text{f}} H_{{298\;{\text{K}}}}^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ was found to be $ {{ - 2, 40 7. 8 \pm 2.0} \mathord{\left/ {\vphantom {{ - 2, 40 7. 8 \pm 2.0} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} $ .  相似文献   

3.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

4.
The mixed-valence 24-vanadophosphate (1) has been synthesized and characterized in the solid state by IR, magnetism, EPR, XPS, and elemental analysis. Single-crystal X-ray analysis was carried out on (Na-1), which crystallizes in the triclinic system, space group , with a = 17.168(3) ?, b = 18.1971(14) ?, c = 20.1422(13) ?, α = 114.753(3)°, β = 99.390(4)°, γ = 95.124(4)°, and Z = 2. Polyanion 1 has an unusual, open structure composed of 2 RuIIIO6 octahedra, 2 VIVO6 octahedra, 14 VVO5 square-pyramids, 8 VVO4 tetrahedra, and 2 PO4 tetrahedra which are all directly linked via edges and corners. The outer surface of 1 is decorated with six RuII(dmso)3 groups. XPS studies on Na-1 confirm the presence of 2 RuIII and 6 RuII as well as 22 VV and 2 VIV centers. Magnetic susceptibility data on Na-1 show that the VIV–RuIII pairs are coupled antiferromagnetically, with J 1 = −13 K and J 2 ∼ −3 K. We did not detect any peak in our EPR measurements on Na-1, thus supporting the conclusion that Na-1 is diamagnetic in its ground state. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. In Memoriam Prof. F. A. Cotton  相似文献   

5.
The standard molar Gibbs free energy of formation of ZnRh2O4(s) has been determined using an oxide solid-state electrochemical cell wherein calcia-stabilized zirconia (CSZ) was used as an electrolyte. The oxide cell can be represented by: . The electromotive force was measured in the temperature range from 943.9 to 1,114.2 K. The standard molar Gibbs energy of formation of ZnRh2O4(s) from elements in their standard state using the oxide electrochemical cell has been calculated and can be represented by: . Standard molar heat capacity C o p,m(T) of ZnRh2O4(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges, from 127 to 299 and 307 to 845 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: . The heat capacity of ZnRh2O4(s), was used along with the data obtained from the oxide electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

6.
As a new method, stable-isotope dilution activation analysis has been developed. When an element consists of at least two stable isotopes which are converted easily to the radioactive nuclides through nuclear reactions, the total amount of the element (xg) can be determined by irradiating simultaneously the duplicated sample containing small amounts of either enriched isotope (y g), and by using the following equation. $${{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} \mathord{\left/ {\vphantom {{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}$$ Where M and M* are atomic weights of the element to be determined and the enriched isotope used as a spike,θ 1 andθ 2 are natural abundances of two stable isotopes in the element,θ 1 * andθ 2 * are isotopic compositions of the above isotopes in the enriched isotope, and R and R* are counting ratios of gamma-rays emitted by two radionuclides produced in the sample and the isotopic mixture. Neither calibration standard nor correction of irradiation conditions are necessary for this method. Usefulness of the present method was verified by photon activations of Ca, Zn and Ce using isotopically enriched48ca,68Zn and142Ce.  相似文献   

7.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

8.
Tellurites of CuTeO3 and HgTeO3 are synthesized and their specific molar heat capacities are experimentally determined for the first time. The tellurites discussed in the present paper are used for preparation of optical glasses with special properties for optoelectronics, nuclear and power industries. The tellurites synthesized are prepared for chemical analysis, differential thermal analysis and X-ray analysis. The use of the tellurites studied is related to knowing their thermodynamic properties like specific molar heat capacity (C p,m), enthalpy \( \left( {\Delta_{{{\text {T}}^{\prime}}}^{\text{T}} H_{\text{m}}^{0} } \right), \) entropy \( \left( {\Delta_{{{\text {T}}^{\prime}}}^{\text{T}} S_{\text{m}}^{0} } \right) \) and Gibbs energy \( \left( { - \Delta_{{{\text {T}}^{\prime}}}^{\text{T}} G_{\text{m}}^{0} } \right) \) . The temperature dependences of their molar heat capacities are determined using the least squares method. The thermodynamic properties are calculated: entropy, enthalpy and Gibbs function.  相似文献   

9.
Hybrid multilayer films composed of poly(ethylenimine) and the Keggin-type polyoxometalates [ SiW11O39 ]8 - ( SiW11 ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{{\hbox{O}}_{{39}}}} \right]^{{8} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}} \right) and [ SiW11CoII( H2O )O39 ]6 - ( SiW11Co ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{C}}{{\hbox{o}}^{\rm{II}}}\left( {{{\hbox{H}}_2}{\hbox{O}}} \right){{\hbox{O}}_{{39}}}} \right]^{{6} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{Co}}} \right) were prepared on glassy carbon electrodes by layer-by-layer self-assembly, and were characterized by cyclic voltammetry and scanning electron microscopy. UV-vis absorption spectroscopy of films deposited on quartz slides was used to monitor film growth, showing that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of bilayers. Cyclic voltammetry indicates that the electrochemical properties of the polyoxometalates are maintained in the multilayer films, and that the first tungsten reduction process for immobilized SiW11 and SiW11Co is a surface-confined process. Electron transfer to [ Fe( CN )6 ]3 - /4 - {\left[ {{\hbox{Fe}}{{\left( {\hbox{CN}} \right)}_6}} \right]^{{3} - /{4} - }} and [ Ru( NH3 )6 ]3 + /2 + {\left[ {{\hbox{Ru}}{{\left( {{\hbox{N}}{{\hbox{H}}_3}} \right)}_6}} \right]^{{3} + /{2} + }} as electrochemical probes was also investigated by cyclic voltammetry. The (PEI/SiW11Co)n multilayer films showed excellent electrocatalytic reduction properties towards nitrite, bromate and iodate.  相似文献   

10.
In the present paper, N,N,N’,N’-tetraoctyl diglycolamide (TODGA) as the extractant and n-dodecane as the diluent, the extraction kinetics behavior of Am(III) in TODGA/n-dodecane–HNO3 system were studied, including stirring speed, the interfacial area, extractant concentration in n-dodecane, extracted ions concentration, acidity of aqueous phase and temperature. The results show that: the extraction process is controlled by diffusion mode under 130 rpm of stirring speed and by chemical reaction mode above 150 rpm. The extraction rate equation and the apparent extraction rate constant of Am(III) by TODGA/n-dodecane in 170 rpm and at 25 °C are followed as: $$ \begin{aligned} r_{0} = \left. {\frac{{{\text{d}}[{\text{M}}]_{{{\text{org}} .}} }}{{{\text{d}}{{t}}}}} \right|_{t = 0} & = k\,\frac{S}{V}\left[ {\text{Am}} \right]_{{{\text{aq}} . ,0}}^{0.94} \left[ {{\text{HNO}}_{3} } \right]_{{{\text{aq}} . ,0}}^{1.05} \left[ {\text{TODGA}} \right]_{{{\text{org}} . ,0}}^{1.19} \\ & \quad k = \left( {24.17 \pm 3.43} \right) \times 10^{ - 3} \,{\text{mol}}^{ - 2.18} \,L^{2.18} \,{ \hbox{min} }^{ - 1} \,{\text{cm}},\;E_{\text{a}} \left( {{\text{Am}}\left( {\text{III}} \right)} \right) = 25.94 \pm 0.98\;{\text{kJ/mol}} .\\ \end{aligned} $$   相似文献   

11.
The product, [Pr(C7H5O3)2(C9H6NO)], which was formed by praseodymium nitrate hexahydrate, salicylic acid (C7H6O3), and 8-hydroxyquinoline (C9H7NO), was synthesized and characterized by elemental analysis, UV spectra, IR spectra, molar conductance, and thermogravimetric analysis. In an optimalizing calorimetric solvent, the dissolution enthalpies of [Pr(NO3)3·6H2O(s)], [2 C7H6O3(s) + C9H7NO(s)], [Pr(C7H5O3)2(C9H6NO)(s)], and [solution D (aq)] were measured to be, by means of a solution-reaction isoperibol microcalorimeter, $ \begin{gathered}\Updelta_{\text{s}} H_{\text{m}}^{\theta}\left[ {{ \Pr }\left( {{\text{NO}}_{ 3} } \right)_{ 3} \cdot 6{\text{H}}_{ 2} {\text{O}}\left( {\text{s}} \right), 2 9 8. 1 5{\text{ K}}} \right] \, = - ( 20. 6 6 { } \pm \, 0. 29)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ { 2 {\text{C}}_{7} {\text{H}}_{ 6} {\text{O}}_{ 3} \left( {\text{s}} \right) +{\text{ C}}_{ 9} {\text{H}}_{ 7} {\text{NO}}\left( {\text{s}}\right),{ 298}. 1 5 {\text{ K}}} \right] \, = \, ( 4 2. 2 7 { }\pm \, 0. 3 1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ {{\text{solutionD }}\left( {\text{aq}} \right), 2 9 8. 1 5 {\text{ K}}} \right] \,= - \left( { 8 9. 1 5 { } \pm \, 0. 4 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\end{gathered} $ Δ s H m θ [ Pr ( NO 3 ) 3 · 6 H 2 O ( s ) , 2 9 8.1 5 K ] = ? ( 20.6 6 ± 0.2 9 ) kJ mol ? 1 , Δ s H m θ [ 2 C 7 H 6 O 3 ( s ) + C 9 H 7 NO ( s ) , 298.1 5 K ] = ( 4 2.2 7 ± 0.3 1 ) kJ mol ? 1 , Δ s H m θ [ solution D ( aq ) , 2 9 8.1 5 K ] = ? ( 8 9.1 5 ± 0.4 3 ) kJ mol ? 1 , and $ \Updelta_{\text{s}} H_{\text{m}}^{\theta } \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right),{ 298}. 1 5 {\text{ K}}}\right\} \, = - \left( { 4 1.0 4 { } \pm \, 0. 3 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ s H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 298.1 5 K } = ? ( 4 1.0 4 ± 0.3 3 ) kJ mol ? 1 , respectively. Through an improved thermochemical cycle, the enthalpy change of the designed coordination reaction was calculated to be $\Updelta_{\text{r}} H_{\text{m}}^{\theta} = \, ( 2 1 3. 1 8\pm0. 6 9)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ r H m θ = ( 2 1 3.1 8 ± 0.6 9 ) kJ mol ? 1 , the standard molar enthalpy of the formation was determined as $ \Updelta_{\text{f}} H_{\text{m}}^{\theta} \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right), 2 9 8. 1 5 {\text{K}}}\right\} \, = \, - \, ( 1 8 7 5. 4\pm 3.1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ f H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 2 9 8.1 5 K } = ? ( 1 8 7 5.4 ± 3.1 ) kJ mol ? 1 .  相似文献   

12.
We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule , where the photo-induced oxidation and reduction for the couple were found to take place at the bilayer. The photoanodic current involving the oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of .  相似文献   

13.
Using theTorker-technique, the vapour pressures of β-Mn in the temperature range 1230–1370° K have been determined. From these measurements the heat of sublimation of α-Mn at 0° K has been obtained ΔH 0 o=67800±800 cal/g-atom. From measurements of the dissociation pressures of ZrMn2 the enthalpy ΔH 0 o of the reaction. $${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3} Zr (s) + {2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}Mn (g) = Zr_{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} Mn_{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} (s)$$ has been evaluated. ΔH 0 o=?49150±700 cal/GFW. Combining this value with the heat of sublimation of α-Mn leads to the heat of formation of Zr1/3Mn2/3 ΔH 0 o=?3900±1200 cal/GFW.  相似文献   

14.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

15.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

16.
An amperometric biosensor for the determination of creatine was developed. The carbon rod electrode surface was coated with sarcosine oxidase (SOX) and creatine amidinohydrolase by cross-linking under glutaraldehyde vapour. The SOX from Arthrobacter sp. 1–1 N was purified and previously used for creation of a creatine biosensor. The natural SOX electron acceptor, oxygen, was replaced by an redox mediating system, which allowed amperometric detection of an analytical signal at +400-mV potential. The response time of the biosensor was less than 1 min. The biosensor showed a linear dependence of the signal vs. creatine concentration at physiological creatine concentration levels. The optimal pH in 0.1 M tris(hydroxymethyl)aminomethane (Tris)–HCl buffer was found to be at pH 8.0. The half-life of the biosensor was 8 days in 0.1 M Tris–HCl buffer (pH 8.0) at 20 °C. Principal scheme of consecutively followed catalytic reactions used to design a biosensor for the determination of creatine  相似文献   

17.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

18.
Molar heat capacity measurement on Na2TeO4(s) and TiTe3O8(s) were carried out using differential scanning calorimeter. The molar heat capacity values were least squares analyzed and the dependence of molar heat capacity with temperature for Na2TeO4(s) and TiTe3O8(s) can be given as, $$ \begin{gathered} {\text{C}}^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{Na}}_{ 2} {\text{TeO}}_{ 4} \left( {\text{s}} \right)} \right\} \,={159}.17 { } + 1.2\,\times\,10^{-4}T-{55}.34\,\times\,10^{5}/T^{2};\hfill \\ C^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{TiTe}}_{ 3} {\text{O}}_{ 8} \left( {\text{s}} \right)} \right\}\,=\,{ 275}.22{ }+{4}.0\,\times\, 10^{-5}T-{58}.28\,\times\,10^{5}/T^{2};\hfill \\ \end{gathered} $$ From this data, other thermodynamic functions were evaluated.  相似文献   

19.
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using ferrocene methanol (FcMeOH), and approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and as mediators, and the use of results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators and In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.Dedicated to Alan, a good friend and colleague on his 60th birthday.  相似文献   

20.
The enthalpies of dissolution for di(N,N-di(2,4,6,-trinitrophenyl)amino)-ethylenediamine (DTAED) in dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) were measured using a RD496-2000 Calvet microcalorimeter at 298.15?K. Empirical formulae for the calculation of the enthalpies of dissolution (??diss H) were obtained from the experimental data of the dissolution processes of DTAED in DMSO and NMP. The linear relationships between the rate (k) and the amount of substance (a) were found. The corresponding kinetic equations describing the two dissolution processes were $ {{{\rm{d}}\alpha } \mathord{\left/ {\vphantom {{{\rm{d}}\alpha } {{\rm{d}}t}}} \right. \kern-0em} {{\rm{d}}t}} = 10^{ - 2.68} \left( {1 - \alpha } \right)^{0.84} $ for the dissolution of DTAED in DMSO, and $ {{{\rm{d}}\alpha } \mathord{\left/ {\vphantom {{{\rm{d}}\alpha } {{\rm{d}}t}}} \right. \kern-0em} {{\rm{d}}t}} = 10^{ - 2.79} \left( {1 - \alpha } \right)^{0.87} $ for the dissolution of DTAED in NMP, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号