首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Three low-lying electronic states (X1Σ+, a3Σ+, and A1Π) of NO+ ion are studied using the complete active space self-consistent-field (CASSCF) method followed by highly accurate valence internally contracted multi-reference configuration interaction (MRCI) approach in combination of the correlation-consistent sextuple basis set augmented with diffuse functions, aug-cc-pV6Z. The potential energy curves (PECs) of the NO+(X1Σ+, a3Σ+, A1Π) are calculated. Based on the PECs, the spectroscopic parameters Re, De, ωe, ωeχe, αe, Be, and D0 are reproduced, which are in excellent agreement with the available measurements. By numerically solving the radial Schrdinger equation of nuclear motion using the Numerov method, the first 20 vibrational levels, inertial rotation and centrifugal distortion constants of NO+(X1Σ+, a3Σ+, A1Π) ion are derived when the rotational quantum number J is equal to zero (J = 0) for the first time, which accord well with the available measurements. Finally, the analytical potential energy functions of these states are fitted, which are used to accurately derive the first 20 classical turning points when J = 0. These results are compared in detail with those of previous investigations reported in the literature.  相似文献   

2.
The potential energy curves (PECs) of BO molecule, including ∑^+and ∏ symmetries with doublet spin multiplicities, are obtained employing multi-reference configuration interaction (MRCI) method and Dunning's correlation consistent basis sets. The analytical potential energy functions (APEFs) are fitted using the Murrell-Sorbie (MS) function and the least square method. Based on the PECs, the spectroscopic constants of the states have been determined and compared with the theoretical and experimental results available to affirm the accuracy and liability of the calculations. The root-mean-square (RMS) errors between the fitted results and the ab initio values are too little in comparison with the chemical accuracy (349.755 cm^-1). It is shown that the present APEFs are accurate and can display the interaction between the atoms well. The present APEFs can be used to construct more complicated APEF or do some dynamic investigations.  相似文献   

3.
The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.  相似文献   

4.
The high level quantum chemistry ab inito multi-reference configuration interaction (MRCI) method with large V5Z basis set is used to calculate the spectroscopic properties of the 15 A-S electronic states (X1∑+, A I П, 1 △, 1 ∑, 3∑+, 3П, 3△, 3△ , 5∑+, 5П, 5△, 1П (II), ofAsO+ radical correlated to the dissociation limit As+(3pg) + O(3pg) and As+(IDg) + O(1Dg). In order to obtain better potential curves and more accurate spectroscopic properties, the Davidson modification is taken into account. With the potential energy curves (PECs) determined here, vibrational levels G(v) and inertial rotation constants Bu are computed for all the bound electronic states when the rotational quantum number J equals zero (J = 0). Except for the states X1∑+, A1П , it is the first time that the multi-reference configuration calculation has been used on the 13 A-S electronic states of the AsO+ radical. The potential energy curves of all the A-S electronic states are depicted according to the avoided crossing rule of the same symmetry. Spin-orbit coupling effect (SOC) is introduced into the states X1 ∑+, A1 П, 3П to consider its effects on the spectroscopic properties. Transition dipole moments (TDMs) from A1П 1, 3 П1 states to the ground state X1∑0+ are predicted as well.  相似文献   

5.
The potential energy curves (PECs) of three low-lying electronic states (X~1Σg~+,w~3△u,and W~1△u) of P2 molecule are investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent basis set in the valence range.The PECs of the electronic states involved are modified by the Davidson correction and extrapolated to the complete basis set (CBS) limit.With these PECs,the spectroscopic parameters of the three electronic states are determined and compared in detail with the experimental data.The comparison shows that excellent agreement exists between the present results and the available experimental data.The complete vibrational states are computed for the w~3△u and W~1△u electronic states when the rotational quantum number J equals zero and the vibrational level G(v),the inertial rotation constant Bv,and the centrifugal distortion constant Dv of the first 30 vibrational states are reported,which accord well with the experimental data.The present results show that the two-point extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.  相似文献   

6.
Carbon monosulfide molecular ion (CS+), which plays an important role in various research fields, has long been attracting much interest. Because of the unstable and transient nature of CS+, its electronic states have not been well investigated. In this paper, the electronic states of CS+ are studied by employing the internally contracted multireference configuration interaction method, and taking into account relativistic effects (scalar plus spin–orbit coupling). The spin–orbit coupling effects are considered via the state-interacting method with the full Breit–Pauli Hamiltonian. The potential energy curves of 18 Λ–S states correlated with the two lowest dissociation limits of CS+ molecular ion are calculated, and those of 10 lowest Ω states generated from the 6 lowest Λ–S states are also worked out. The spectroscopic constants of the bound states are evaluated, and they are in good agreement with available experimental results and theoretical values. With the aid of analysis of Λ–S composition of Ω states at different bond lengths, the avoided crossing phenomena in the electronic states of CS+ are illuminated. Finally, the single ionization spectra of CS (X1Σ+) populating the CS+(X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+) states are simulated. The vertical ionization potentials for X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+ states are calculated to be 11.257, 12.787, 12.827, and 15.860 eV, respectively, which are accurate compared with previous experimental results, within an error margin of 0.08 eV~0.2 eV.  相似文献   

7.
王杰敏  孙金锋  施德恒 《中国物理 B》2010,19(11):113601-113601
This paper employs the highly accurate valence internally contracted multireference configuration interaction method to investigate the potential energy curves (PECs) for the ground state (X 1 Σ +) and two low-lying excited states (A 1 Π and D 1 of phosphorus nitride (PN) radical with the correlation-consistent basis set,aug-cc-pV6Z,in the valence range.Relativistic effects are considered in these calculations.The spectroscopic constants of the X 1 Σ + and A 1 Π states are calculated based on the PECs,and the results are in good accord with the available experimental data.The first 30 vibrational states for the X 1 Σ + state and the first 40 vibrational states for theA 1 Π state are determined when J=0.For each vibrational state,molecular constants G(υ),B(υ) and D(υ) are also attained.  相似文献   

8.
This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the basis sets D95++, 6-311++G and 6-311++G^**. Comparing the obtained results with the experiments, it gets the conclusion that the basis set 6-311++G^** is most suitable for the optimal structure calculations of X^1.∑^+, A^Ⅱ and C^1∑^- states of SiO molecule. The whole potential energy curves for these electronic states are further scanned by using SAC/6-311++G^** method for the ground state and SAC-CI/6-311++G^** method for the excited states, then use a least square method to fit Murrell~Sorbie functions, at last the spectroscopic constants and force constants are calculated, which are in good agreement with the experimental data.  相似文献   

9.
This paper calculates the potential energy curves (PECs) of the ground state (X 1 Σ + ) and excited state (A 1 Σ + ) of ScN molecule by multireference configuration interaction method. The correct character of the PECs has been gripped while they had been improperly reported in the literature. Based on the PECs, the spectroscopic parameters and vibrational energy levels are determined, and compared with experimental data and other theoretical works available at the present.  相似文献   

10.
刘玉芳  贾毅 《中国物理 B》2011,20(3):33106-033106
This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X^2∑+, A^2П and B^2∑+ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants (Be, αe and ωeχe) of these states. For the X2∑+ state, the obtained values of De, Be, αe, ωeχe, Re and ωe are 5.4831 eV, 0.792119 cm-1, 0.005521 cm-1, 6.89653 cm-1, 0.15683 nm, 12535.11 cm-1, respectively. For the A2H state, the present values of De, Be,αe, ωeχe, Re and We are 4.586 eV, 0.703333 cm-1, 0.005458 cm-1, 6.03398 cm-1, 0.16613 nm, 1057.89 cm-1, respectively. For the B2E+ state, the present values of De, Be, αe, ωeχe, Re and We are 3.506 eV, 0.677561 cm-1, 0.00603298 cm-1, 5.68809 cm-1, 0.1696 nm, 822.554 cm-1, respectively. For these states, the vibrational states with the rotational quantum number J equals zero (J = 0) are studied by solving the radial nuclear Schr6dinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.  相似文献   

11.
This paper investigates the spectroscopic properties of the SD + (X 3 Σ ) ion by employing the coupled-cluster singles-doubles-approximate-triples [CCSD(T)] theory combining with the quintuple correlation-consistent basis set augmented with diffuse functions (aug-cc-pV5Z) of Dunning and co-workers. The accurate adiabatic potential energy function is obtained by the least-squares fitting method with the 100 ab initio points, which are calculated at the unrestricted CCSD(T)/aug-cc-pV5Z level of theory over the internuclear separation range from 0.09 to 2.46 nm. Using the potential, it accurately determines the spectroscopic parameters (D e , ω e χ e , α e and B e ). The present D e , R e , ω e , ω e χ e , α e and B e results are of 3.69119 eV, 0.13644 nm, 1834.949 cm 1 , 25.6208 cm 1 , 0.1068 cm 1 and 4.7778 cm 1 , respectively, which are in remarkably good agreement with the experimental findings. A total of 29 vibrational states has been predicted by numerically solving the radial Schro¨dinger equation of nuclear motion when the rotational quantum number J equals zero. The complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reported when J = 0 for the first time, which are in good accord with the measurements wherever available.  相似文献   

12.
Potential energy curves (PECs) for the ground state (X2∑+) and the four excited electronic states (A2∏, B2∏, C2∑+, 4∏) of a Bell molecule are calculated using the multi-configuration reference single and double excited configuration interaction (MRCI) approach in combination with the aug-cc-pVTZ basis sets. The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm, and the equilibrium bond length Re and the vertical excited energy Te are determined directly. It is evident that the X2∑+, A2∏, B2∏, C2∑+ states are bound and 4∏ is a repulsive excited state. With the potentials, all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero (J = 0) by numerically solving the radial SchrSdinger equation of nuclear motion. Then the spectroscopic data are obtained including the rotation coupling constant w e, the anharmonic constant WeXe, the equilibrium rotation constant Be, and the vibration-rotation coupling constant ae. These values are compared with the theoretical and experimental results currently available, showing that they are in agreement with each other.  相似文献   

13.
The potential energy curves (PECs) of four electronic states (X1Σ+g , e3△u , a 3 Σ-u , and d 3Πg ) of an As 2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (Te , Re , ωe , ωexe , ωeye , αe , βe , γe , and Be ) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d 3Πg electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate.  相似文献   

14.
张晓燕  杨传路  高峰  任廷琦 《中国物理》2006,15(9):1981-1986
The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.  相似文献   

15.
The potential energy curves(PECs) of X2+Σand A2Π states of the CN molecule have been calculated with the multireference configuration interaction method and the aug-cc-pwCV5Z basis set. Based on the PECs, all of the vibrational and rotational levels of the13C14N molecule are obtained by solving the Schro¨dinger equation of the molecular nuclear motion.The spectroscopic parameters are determined by fitting the Dunham coefficients with the levels. Both the levels and the spectroscopic parameters are in good qualitative agreement with the experimental data available. The analytical potential energy functions are also deduced from the calculated PECs. The present results can provide a helpful reference for future spectroscopy experiments or dynamical calculations of the molecule.  相似文献   

16.
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometry of the α^3∑u^+ state for ^7Li2 is made at numerous basis sets such as 6-311++G(2df), cc-PVTZ, 6-311++G(2df, p), 6-311G(3df,3pd), 6-311++G(2df,2pd), D95(3df,3pd), 6-311++G, DGDZVP, 6-311++G(3df,2pd), 6-311G(2df,2pd), D95V++, CEP-121G, 6-311++G(d,p), 6-311++G(2df, pd) and 6-311++G(3df,3pd) in full active space using a symmetry-adapted-cluster/ symmetry-adapted-cluster configuration-interaction (SAC/SAC=CI) method presented in Gaussian03 program package. The difference of the equilibrium geometries obtained by SPES and by OPT is reported. Analyses show that the results obtained by SPES are more reasonable than those obtained by OPT. We have calculated the complete potential energy curves at those sets over a wide internuclear distance range from about 3.0α0 to 37.0α0, and the conclusion is that the basis set cc-PVTZ is the most suitable one. With the potential obtained at ccopVTZ, the spectroscopic data (Te, De, D0, ωe,ωeХe, αe and Be) are computed and they are 1.006 eV, 338.71 cm^-1, 307.12 cm^-1, 64.88 cm^-1, 3.41 cm^-1, 0.0187 cm^-1 and 0.279 cm^-1, respectively, which are in good agreement with recent measurements. The total 11 vibrational states are found at J=0. Their corresponding vibrational levels and classical turning points are computed and compared with available RKR data, and good agreement is found. One inertial rotation constant (By) and six centrifugal distortion constants (Dr Hv, Lv, My, Nv, and Ov) are calculated. The scattering length is calculated to be -27.138α0, which is in good accord with the experimental data.  相似文献   

17.
The 3s–np photoionization processes of the ground state 2P1/2 and the metastable state 2P3/2 of Ar5+ are investigated using our recently developed relativistic R-matrix code, where the interactions between the bound states and the continuum states are included. Both resonance positions and the oscillator strengths are in much better agreement with the absolute experimental measurements by Wang et al.[Wang J C, Lu M, Esteves D, Habibi M, Alna’washi G and Phaneuf R A 2007 Phys. Rev. A 75 062712] with a resolution of 80 meV than their theoretical results. The contributions of the two experimental unresolved transitions are distinguished in our calculations, which show that the transitions from the ground state also make significant contributions to some resonances. Our theoretical results are also in good agreement with the measurements for the first resonance with a higher resolution of 20 meV.  相似文献   

18.
《中国物理 B》2021,30(5):53101-053101
High-level ab initio calculations of the Λ–S states for aluminum monoiodide(Al Cl) molecule are performed by utilizing the explicitly correlated multireference configuration interaction(MRCI-F12) method. The Davidson correction and scalar relativistic correction are investigated in the calculations. Based on the calculation by the MRCI-F12 method, the spin–orbit coupling(SOC) effect is investigated with the state-interacting technique. The adiabatic potential energy curves(PECs) of the 13 Λ–S states and 24 Ω states are calculated. The spectroscopic constants of bound states are determined,which are in accordance with the results of the available experimental and theoretical studies. Finally, the transition properties of 0~+(2)–X0~+, 1(1)–X0~+, and 1(2)–X0~+ transitions are predicted, including the transition dipole moments(TDMs),Franck–Condon factors(FCFs), and the spontaneous radiative lifetimes.  相似文献   

19.
Multi-reference configuration interaction is used to produce potential energy curves(PECs) for the excited B1Π state of KH molecule.To investigate the correlation effect of core-valence electrons,five schemes are employed which include the different correlated electrons and different active spaces.The PECs are fitted into analytical potential energy functions(APEFs).The spectroscopic parameters,ro-vibrational levels,and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data.The molecular properties for B1Π obtained in this letter,which are better than those available in literature,can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.  相似文献   

20.
魏长立  张晓美  丁大军  闫冰 《中国物理 B》2016,25(1):13102-013102
A computational scheme for accurate spectroscopic constants was presented in this work and applied to the lowest two electronic states of sulfur dimer. A high-level ab initio calculation utilizing explicitly correlated multireference configuration interaction method(MRCI-F12) was performed to compute the potential energy curves(PECs) of the ground triplet X3-Σgand first excited singlet a1?g states of sulfur dimer with cc-p CVX Z-F12(X = T, Q) basis sets. The effects of Davidson modification, core–valence correlation correction, and scalar relativistic correction on the spectroscopic constants were examined. The vibration–rotation spectra of the two electronic states were provided. Our computational results show excellent agreement with existing available experimental values, and the errors of main spectroscopic constants are within 0.1% order of magnitude. The present computational scheme is cheap and accurate, which is expected for extensive investigations on the potential energy curves or surfaces of other molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号