首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose–Einstein condensate are investigated by using the Hartree–Fock–Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements.According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.  相似文献   

2.
Abstract This paper points out that the Landau criterion for macroscopic superfluidity of He H is only a criterion for microscopic superfluidity of ^4He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-To cuprates.  相似文献   

3.
First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem on a commmutative space. Then we study the modifications introduced by the coordinate-coordinate noncommuting and momentum-momentum noncommuting, namely, by using a generalized Bopp's shift method we construct the Wigner function for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phase space (NCPS).  相似文献   

4.
5.
We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensional honeycomb optical lattice subjected to an effective magnetic field, which is created with optical means. In the presence of the effective magnetic field, the energy spectrum of the unconventional Landau levels is calculated. Furthermore, we propose to detect the unconventional Landau levels with Bragg scattering techniques.  相似文献   

6.
Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves.When a laser or electron beam passes through a dense plasma,hot low density electron populations can be generated to alter the wave damping/growth rate.In this paper,we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found.The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized(r,q)distribution function,which is the generalized form of the kappa and Maxwellian distribution functions.In the limiting case of r=0 and q→∞,it reduces to the classical Maxwellian distribution function,and when r=0 and q→κ+1,it reduces to the kappa distribution function.  相似文献   

7.
We investigate the Landau-Zener tunnelling of two-component Bose-Einstein condensates (BECs) in optical lattices. In the neighborhood of the Brillouin zone edge, the system can be reduced to two coupled nonlinear two-level models. From the models, we calculate the change of the tunnelling probability for each component with the linear sweeping rate. It is found that the probability for each component exhibits regular oscillating behavior for the larger sweeping rate, but for smaller rate the oscillation is irregular. Moreover, the asymmetry of the tunnelling between the two components can be induced by the unbalanced initial populations or the inequality of the two self-interactions when the cross-interaction between the components exists. The result can not be found in the single component BECs.  相似文献   

8.
This paper computes the rotational energy levels of the HCO B^2A'-X^2A'31^1 transition, especially, the higher values of the rotational quantum numbers NKa Kc and Ka, with the rotational constants which are obtained via B3LYP method with 6-311G basis set, and the results show that the calculated frequencies using the computed vibration-rotation energy levels are in reasonable agreement with the data from the experiment. Meanwhile, the line intensities of HCO are first reported, the results are of significance for the studying HCO.  相似文献   

9.
We have investigated the behavior of electronic phases of the second Landau level under tilted magnetic fields. The fractional quantum Hall liquids at nu=2+1/5 and 2+4/5 and the solid phases at nu=2.30, 2.44, 2.57, and 2.70 are quickly destroyed with tilt. This behavior can be interpreted as a tilt driven localization of the 2+1/5 and 2+4/5 fractional quantum Hall liquids and a delocalization through the melting of solid phases in the top Landau level, respectively. The evolution towards the classical Hall gas of the solid phases is suggestive of antiferromagnetic ordering.  相似文献   

10.
We report the observation of a new fractional quantum Hall state in the second Landau level of a two-dimensional electron gas at the Landau level filling factor ν=2+6/13. We find that the model of noninteracting composite fermions can explain the magnitude of gaps of the prominent 2+1/3 and 2+2/3 states. The same model fails, however, to account for the gaps of the 2+2/5 and the newly observed 2+6/13 states suggesting that these two states are of exotic origin.  相似文献   

11.
The 4s4p excitation energies and the 4s2-4s4p E1 transitions for zinc-like ions from Z=48 to 54 are calculated by the multi-configuration Dirac-Hartree-Fock (MCDHF) method in this paper. The results for fine-structure energy levels, wavelengths and lifetimes between Z = 48 (Cd) and Z = 54 (Xe) are presented and compared with other theoretical and experimental results. The calculated values including core-valence correlation are found to be very similar to other theoretical and experimental values. We believe that our calculated values can guide experimentalists in identifying the fine-structure levels in their future work.  相似文献   

12.
We reconsider energy calculations of the spin polarized ν = 1/2 Chern-Simons theory. We show that one has to be careful in the definition of the Chern-Simons path integral in order to avoid an IR divergent magnetic ground state energy in RPA as in [J. Dietel et al, Eur. Phys. J. B 5, 439 (1998)]. We correct the path integral and get a well behaved magnetic energy by considering the energy of the maximal divergent graphs as well as the Hartree-Fock graphs. Furthermore, we consider the ν = 1/2 and the ν = 5/2 system with spin degrees of freedom. In doing this we formulate a Chern-Simons theory of the ν = 5/2 system by transforming the interaction operator to the next lower Landau level. We calculate the Coulomb energy of the spin polarized as well as the spin unpolarized ν = 1/2 and the ν = 5/2 system as a function of the interaction strength in RPA. These energies are in good agreement with numerical simulations of interacting electrons in the first as well as in the second Landau level. Furthermore, we calculate the compressibility, the effective mass and the excitations of the spin polarized ν = 2 + 1/ systems where is an even number. Received 13 June 2000  相似文献   

13.
We have investigated the fractional quantum Hall states of Dirac electrons in a graphene layer in different Landau levels. The relativistic nature of the energy dispersion relation of electrons in graphene significantly modifies the interelectron interactions. This results in a specific dependence of the ground state energy and the energy gaps for electrons on the Landau-level index. For the valley-polarized states, i.e., at nu=1/m, m being an odd integer, the energy gaps have the largest values in the n=1 Landau level. For the valley-unpolarized states, e.g., for the 2/3 state, the energy gaps are suppressed for n=1 as compared to those at n=0. For both n=1 and n=0, the ground state of the 2/3 system is fully valley-unpolarized.  相似文献   

14.
We directly measure the magnetization of both the conduction electrons and Mn2+ ions in (Zn,Cd,Mn)Se two-dimensional electron gases (2DEGs) by integrating them into ultrasensitive micromechanical magnetometers. The interplay between spin and orbital energy in these magnetic 2DEGs causes Landau level degeneracies at the Fermi energy. These Landau level crossings result in novel features in the de Haas-van Alphen oscillations, which are quantitatively reproduced by a simple model.  相似文献   

15.
The observation of new insulating phases of two-dimensional electrons in the first excited Landau level is reported. These states, which are manifested as reentrant integer quantized Hall effects, exist alongside well-developed even-denominator fractional quantized Hall states at nu = 7/2 and 5/2 and new odd-denominator states at nu = 3+1/5 and 3+4/5.  相似文献   

16.
At a very low-temperature of 9 mK, electrons in the second Landau level of an extremely high-mobility two-dimensional electron system exhibit a very complex electronic behavior. With a varying filling factor, quantum liquids of different origins compete with several insulating phases leading to an irregular pattern in the transport parameters. We observe a fully developed nu=2+2/5 state separated from the even-denominator nu=2+1/2 state by an insulating phase and a nu=2+2/7 and nu=2+1/5 state surrounded by such phases. A developing plateau at nu=2+3/8 points to the existence of other even-denominator states.  相似文献   

17.
Magnetotransport measurements in a clean two-dimensional electron system confined to a wide GaAs quantum well reveal that, when the electrons occupy two electric subbands, the sequences of fractional quantum Hall states observed at high fillings (ν>2) are distinctly different from those of a single-subband system. Notably, when the Fermi energy lies in the ground state Landau level of either of the subbands, no quantum Hall states are seen at the even-denominator ν=5/2 and 7/2 fillings; instead, the observed states are at ν=[i+p/(2p±1)], where i=2, 3, 4 and p=1, 2, 3, and include several new states at ν=13/5, 17/5, 18/5, 25/7, and 14/3.  相似文献   

18.
The gamma response function is required for energy calibration of EJ301 (5 cm in diameter and 20 cm in height) organic liquid scintillator detector by means of gamma sources. The GEANT4 and FLUKA Monte Carlo simulation packages were used to simulate the response function of the detector for standard 22Na, 60Co, 137Cs gamma sources. The simulated results showed a good agreement with experimental data by incorporating the energy resolution function to simulation codes. The energy resolution and the position of the maximum Compton electron energy were obtained by comparing measured light output distribution with simulated one. The energy resolution of the detector varied from 21.2% to 12.4% for electrons in the energy region from 0.341 MeV to 1.12 MeV. The accurate position of the maximum Compton electron energy was determined at the position 81% of maximum height of Compton edges distribution. In addition, the relation of the electron energy calibration and the effective neutron detection thresholds were described in detail. The present results indicated that both packages were suited for studying the gamma response function of EJ301 detector.  相似文献   

19.
The structure and working principle of Micromegas (MICRO Mesh Gaseous Structure) is discussed. Some radiation sources of α and X rays are used to test this detector. The optimized electric-field intensity of the conversion gap is obtained. The transmission of electrons and the uniformity of the amplification gap are also presented. The energy resolution of the 5.9 keV peak is better than 27%.  相似文献   

20.
We describe a technique which allows a direct measurement of the relative Fermi energy in an electron system by employing a double-layer heterostructure. We illustrate this method by using a graphene double layer to probe the Fermi energy as a function of carrier density in monolayer graphene, at zero and in high magnetic fields. This technique allows us to determine the Fermi velocity, Landau level spacing, and Landau level broadening. We find that the N=0 Landau level broadening is larger by comparison to the broadening of upper and lower Landau levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号