首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dark current transport mechanism associated with acceptor concentration in GaAs-based blocked-impurity-band (BIB) detectors has been investigated. Device structure, numerical models and simulation techniques are described in detail. By careful model and parameter calibration, the numerical simulation is completely consistent with the analytical calculation, proving the validity of simulation methods. Our results reveals that the carrier-transport modes of GaAs-based BIB detectors can be classified into two categories (i.e., electron current and hopping current), and the hopping current can be neglected compared with the electron current. Besides, it is demonstrated that the dark current of GaAs-based BIB detector is dominated by the drift–diffusion current and the generation-recombination current, and the both current components are monotonically decreasing functions of the acceptor concentration.  相似文献   

2.
李勇  李刚  沈洪斌  钟文忠  李亮 《应用光学》2016,37(5):651-656
对基于InGaAs材料体系的金属 半导体 金属(metal semiconductor metal,MSM)光电探测器进行设计,并对其暗电流、光电流、电容以及截止频率等性能参数进行仿真。通过添加InAlAs肖特基势垒增强层,将探测器的暗电流减小到了pA量级。仿真结果表明,探测器在光照下有明显的光响应,通过合理设计器件结构,探测器的工作频率可以达到1.5 THz。制备了探测器样品,并对其暗电流和光响应进行了测试,测试结果与仿真结果基本吻合。  相似文献   

3.
Extended long wavelength response to 200 μm (50 cm−1) has been observed in Ge:Sb blocked impurity band (BIB) detectors with ND1×1016 cm−3. The cut-off wavelength increases from 150 μm (65 cm−1) to 200 μm (50 cm−1) with increasing bias. The responsivity at long wavelengths was lower than expected. This can be explained by considering the observed Sb diffusion profile in a transition region between the blocking layer and active layer. BIB modeling is presented which indicates that this Sb concentration profile increases the electric field in the transition region and reduces the field in the blocking layer. The depletion region consists partially of the transition region between the active and blocking layer, which could contribute to the reduced long wavelength response. The field spike at the interface is the likely cause of breakdown at a lower bias than expected.  相似文献   

4.
The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570W (2005).  相似文献   

5.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

6.
We present a joint experimental and theoretical investigation on a long wavelength infrared quantum cascade detector to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade detectors thus providing a useful tool for device optimization.  相似文献   

7.
魏相飞  何锐  张刚  刘向远 《物理学报》2018,67(18):187301-187301
太赫兹技术由于具有重大的科学价值及应用前景而引起了广泛关注,其核心问题是性能优异的室温太赫兹辐射源和探测器研究.本文用半经典的玻尔兹曼方程方法研究了In As/Ga Sb量子阱系统中载流子对电磁场的响应,运用平衡方程方法求解玻尔兹曼方程得到了量子阱系统中的光电导,系统地研究了量子阱结构对光电导的影响,揭示了在该量子阱系统中光电导产生的物理机制.研究发现,量子阱结构主要通过调节载流子的能级、浓度和波函数的耦合影响光电导,对称性较好的量子阱结构(8 nm-8 nm)的光电导信号更强,其峰值落在太赫兹区(0.2 THz),并且在低温下器件的性能较好,温度升高则吸收峰略有降低,且光电导峰值发生红移.研究结果表明该量子阱系统可以用作室温太赫兹光电器件.  相似文献   

8.
The current-voltage (I-V) characteristics of 4H-SiC metal-semiconductor-metal (MSM) ultraviolet pho-todetector with different finger widths and spacings, different carrier concentrations and thicknesses of n-type epitaxial layer are simulated. The simulation results indicate that the dark current and the pho-tocurrent both increase when the finger width increases. But the effect of finger width on the dark current is more significant. On the other hand, the effect of finger spacing on the photocurrent is more significant. When the finger spacing increases, the photocurrent decreases and the dark current is almost changeless. In addition, it is found that the smaller the carrier concentration of n-type epitaxial layer is, the smaller the dark current and the larger the photocurrent wiU be. It is also found that I-V characteristics of MSM detector also depend on the epitaxial layer thickness. The dark current of detector is smaller and the photocurrent is larger when the epitaxial layer thickness is about 3 μm.  相似文献   

9.
设计并模拟计算了延伸波长至2.6 μm的复合盖层材料PIN结构In0.82Ga0.18As红外探测器,即PNN型盖层、PIN结构的In0.82Ga0.18As红外探测器。研究了不同厚度及载流子浓度的PNN盖层对探测器性能的影响。研究结果表明:在In0.82Al0.18As厚度为200 nm且载流子浓度为2E18、InAs0.6P0.4 厚度为50 nm且载流子浓度为2E17、In0.82Ga0.18As厚度为50 nm且载流子浓度为2E16时,探测器表现出最佳的性能。与传统PIN结构探测器相比,其相对光谱响应度仅降低10%,暗电流降低了1个数量级。计算分析了不同工作温度下的暗电流,结果显示:在120~250 K时,暗电流主要为缺陷隧穿电流;在250~300 K时,暗电流主要为带间隧穿电流;当温度大于300 K时,暗电流主要为产生-复合电流和扩散电流。  相似文献   

10.
易淋凯  黄佳琳  周梅  李春燕  赵德刚 《发光学报》2017,38(10):1327-1331
研究了p-i-n型和肖特基型Ga N基紫外探测器的响应光谱和暗电流特性。实验发现,随着p-Ga N层厚度的增加,p-i-n型紫外探测器的响应度下降,并且在短波处下降更加明显。肖特基探测器的响应度明显比pi-n结构高,主要是由于p-Ga N层吸收了大量的入射光所致。肖特基型紫外探测器的暗电流远远大于p-i-n型紫外探测器的暗电流,和模拟结果基本一致,主要是肖特基型探测器是多子器件,而p-i-n型探测器是少子器件。要制备响应度大、暗电流小的高性能Ga N紫外探测器,最好采用p-Ga N层较薄的p-i-n结构。  相似文献   

11.
The time evolution of high-field carrier transport in bulk GaAs is studied with intense femtosecond THz pulses. While ballistic transport of electrons occurs in an n-type sample, a transition from ballistic to driftlike motion is observed in an electron-hole plasma. This onset of friction is due to the holes, which are heated by THz absorption. Theoretical calculations, which reproduce the data quantitatively, show that both electron-hole scattering and local-field effects in the electron-hole plasma are essential for the time-dependent friction.  相似文献   

12.
由于太赫兹波与众多物质之间存在着丰富的相互作用,太赫兹技术在众多领域均有应用需求。因此,基于独特物理机制和优异材料特性的高灵敏度、便携式太赫兹探测器的研制刻不容缓。黑砷磷是一种新型二维材料,其带隙和输运特性随化学组分可调,在光电探测领域被广泛关注。目前基于黑砷磷的研究集中在红外探测方面,而对于太赫兹探测的应用未见报道。本文介绍了一种基于黑砷磷的天线耦合太赫兹探测器。实验结果表明,在探测过程中存在两种不同的探测机制,并且两者之间存在竞争关系。通过改变黑砷磷的化学组分可以定制不同的探测机制,使其达到最优响应性能。在平衡材料带隙和载流子迁移率的情况下,探测器实现了室温下对0.37 THz电磁波的灵敏探测,其电压响应度和噪声等效功率分别为28.23 V/W和0.53 nW/Hz1/2。  相似文献   

13.
We propose and demonstrate an ultrabroadband concept to characterize amplitude and phase changes of femtosecond pulses. The radiation is superimposed with the first subharmonic spectral components from the same laser source. This effective ω/2ω pulse pair induces a coherently controlled charge current in a time-integrating semiconductor detector. An interferometric variation of the time delay between the harmonically related components then reveals the electric field of the 2ω part. This method is realized with the second harmonic of a compact Er:fiber source centered at 390 THz and a GaAs-based detector. Most strikingly, it is sensitive to ~π/20 phase changes and can be utilized to analyze femtojoule pulses.  相似文献   

14.
张镜水  孔令琴  董立泉  刘明  左剑  张存林  赵跃进 《物理学报》2017,66(12):127302-127302
针对基于经典动力学理论传统模型中忽略扩散效应的问题,通过对基于玻尔兹曼理论的场效应管传输线模型的理论分析,建立了包含扩散效应的太赫兹互补金属氧化物半导体(CMOS)场效应管探测器理论模型,研究扩散效应对场效应管电导及响应度的影响.同时,将此模型与忽略了扩散效应的传统模型进行了对比仿真模拟,给出了两种模型下的电流响应度随温度及频率变化的差别.依据仿真结果,并结合3σ原则明确了场效应管传输线模型中扩散部分省略的依据和条件.研究结果表明:扩散部分引起的响应度差异大小主要由场效应管的工作温度及工作频率决定.其中工作频率起主要作用,温度变化对差异大小影响较为微弱;而对于工作频率而言,当场效应管工作频率小于1 THz时,模型中的扩散部分可以忽略不计;而当工作频率大于1 THz时,扩散部分不可省略,此时场效应管模型需同时包含漂移、散射及扩散三个物理过程.本文的研究结果为太赫兹CMOS场效应管理论模型的精确建立及模拟提供了理论支持.  相似文献   

15.
锡基钙钛矿太阳能电池可避免铅元素对环境带来的污染,近年来已成为光伏领域的研究热点.本文以SCAPS-1D太阳能电池数值模拟软件为平台,对不同电子传输层和不同空穴传输层的锡基钙钛矿太阳能电池器件的性能进行数值仿真对比,从理论上分析不同载流子传输层的锡基钙钛矿太阳能电池的性能差异.结果显示,载流子传输层与钙钛矿层的能带对齐对电池性能至关重要.电子传输层具有更高的导带或电子准费米能级以及空穴传输层具有更低的价带或空穴准费米能级时,对电池输出更大的开路电压有促进作用.另外,当电子传输层的导带高于钙钛矿层导带或钙钛矿层的价带高于空穴传输层的价带时,钙钛矿层与载流子传输层界面形成spike势垒,界面复合机制相对较弱,促使电池获得更佳的性能.当Cd0.5Zn0.5S和MASnBr3分别作为电子传输层和空穴传输层时,与其他材料相比,获得了更优的输出特性:开路电压Voc=0.94 V,短路电流密度Jsc=30.35 mA/cm^2,填充因子FF=76.65%,功率转换效率PCE=21.55%,可认为Cd0.5Zn0.5S和MASnBr3是设计锡基钙钛矿太阳能电池结构合适的载流子传输层材料.这些模拟结果有助于实验上设计并制备高性能的锡基钙钦矿太阳能电池.  相似文献   

16.
张运炎  范广涵 《中国物理 B》2011,20(4):48502-048502
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra,carrier concentration in the quantum wells (QWs),energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.  相似文献   

17.
Above-band-gap optical excitation of electron-hole pairs screens the doping-induced surface electric field and generates terahertz(THz) pulses via free-carrier transport. THz emission from a heavily doped silicon surface is much weaker than that of lightly doped samples. A polarity reversal of the THz electric field is observed in heavily doped p-type silicon, indicating that the doping related and carrier induced surface electric fields oppose each other. By comparing the penetration depth of the excitation laser with the thickness of the depletion layer for the doped silicon, it is shown that competition between diffusion and drift current causes the polarity reversal.  相似文献   

18.
We suggest a balance-equation approach to hot-electron transport in a single arbitrary energy band subject to an intense radiation field of terahertz (THz) frequency, including all the multiphoton emission and absorption processes and taking account of realistic scatterings due to impurities and phonons. This approach, which allows one to calculate THz-driving, time-averaging transport based on a set of time-independent equations, provides a convenient method to study the effect of an intense THz electric field on carrier transport in a nonparabolic energy band. As an example, these fully three-dimensional, acceleration- and energy-balance equations are applied to the discussion of superlattice miniband transport at lattice temperature T=77 and 300 K driven by the THz radiation field of varying strengths. It is shown that the current through a dc biased miniband superlattice is greatly reduced by the irradiation of an intense THz electric field. Received: 23 January 1998 / Revised: 31 March 1998 / Accepted: 20 April 1998  相似文献   

19.
Zi-Heng Wang 《中国物理 B》2022,31(9):98505-098505
To describe the dynamic response characteristics of the laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure, a general theoretical temporal response model is deduced by combining the unsteady continuity equation and numerical calculation method. Through the model, the contribution of the distribution Bragg reflection structure and graded-bandgap emission layer to the temporal response are investigated. Meanwhile, the relationships between the temporal response characteristics of the laminated GaAs-based photocathode and different structural parameters are also analyzed, including average electron decay time, emission layer thickness, and incident light wavelength. It is found that the introduction of distribution Bragg reflection (DBR) layer solves the discrepancy between the absorption capability of the emission layer and the temporal response. Moreover, the distributed Bragg reflection layer can improve the time response by optimizing the initial photoelectron distribution. The improvement effect of the DBR layer on the temporal response is enhanced with the emission layer thickness decreasing or the incident light wavelength increasing. These results explain the effect of the DBR layer of the photocathode on the dynamic characteristics, which can offer a new insight into the dynamic research of GaAs-based photocathode.  相似文献   

20.
周梅  常清英  赵德刚 《物理学报》2008,57(4):2548-2553
提出了一种减小GaN肖特基结构紫外探测器暗电流的方法.该方法是在普通的GaN肖特基结构的表面增加一层薄的p-GaN.模拟计算结果表明,该层p-GaN能增加肖特基势垒高度,从而减小了器件的暗电流,提高了器件性能.进一步的计算还发现,对于p型载流子浓度较高的情况下,只需要很薄的一层p-GaN就能显著增加肖特基势垒高度,对于p型载流子浓度较低的情况下,则需要较厚的一层p-GaN才能有较好的肖特基势垒高度增加效果. 关键词: GaN 肖特基结构 紫外探测器 暗电流  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号