首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 367 毫秒
1.
合成了二茂铁接枝聚乙烯亚胺( PEI-Fc),利用二茂铁与β-环糊精的主客体嵌套作用制备了环糊精修饰聚乙烯亚胺,核磁测定结果显示,每条PEI-Fc链上通过主客体作用嵌套的CD平均为26个.这种基于弱相互作用力的β-环糊精修饰聚乙烯亚胺能有效诱导DNA分子的缔合,在N/P值达到3以上时,可形成表面为正电荷、粒径为150 ~ 250 nm的球形粒子.在含10%胎牛血清的DMEM体外细胞培养基中,由于培养基中的蛋白质能够在粒子表面发生静电吸附,PEI-Fc/CD/DNA基因微载体显示出良好的稳定性.HEK293细胞培养结果显示,以表达绿色荧光蛋白的质粒pEGFP为模型,以N/P值为10的PEI/DNA组装体作为对照,N/P值为3、5和10的PEI-Fc/CD/DNA组装体的转染效率均达到对照组的2~3倍,这种基于主客体组装构建的环糊精修饰基因微载体显著提高了基因转染效率.  相似文献   

2.
以甘油酸为单体,通过本体缩聚制备了水溶性生物降解高分子聚甘油酸,利用聚甘油酸侧基上的羟基固定生物相容性好的疏水性分子胆固醇,通过亲疏水作用自组装形成胶束.以形成的胶束作为载体负载抗肿瘤药物阿霉素,研究了药物的体外释放行为.将肝癌细胞HepG2与载药胶束共培养研究其体外抗肿瘤效果.研究结果表明,聚甘油酸-g-胆固醇共聚物...  相似文献   

3.
药物/基因共负载的智能微载体的制备是肿瘤多元复合治疗的关键科学问题。本文以疏水性荧光染料罗丹明B为模型药物,采用聚乙烯亚胺-接枝-胆固醇两亲聚合物作为药物载体,成功制备了罗丹明与基因共负载的超分子组装体。通过组装条件的调控,获得了尺寸为150 nm、表面电位33 mV的球形纳米粒子,并依然具有很好的DNA缔合特性。细胞培养结果表明:表面正电荷的罗丹明与基因共负载纳米粒子很容易被细胞内吞,并能有效转染细胞,为高效安全的药物/基因共负载微载体的制备提供了切实可行的途径。 关键词 非病毒基因载体;超分子组装;药物/基因共负载  相似文献   

4.
以聚乙二醇单甲醚作大分子引发剂,异辛酸亚锡作催化剂,将不同比例的ε-己内酯(CL)与4-甲基-ε-己内酯(MCL)单体开环共聚,并通过控制CL和MCL的投料比以及投料方式,得到了疏水链段上CL和MCL不同比例和分布的4组聚合物.核磁和凝胶渗透色谱法表征了聚合物的结构,示差扫描量热法,广角X射线衍射和红外光谱表征了聚合物的结晶性.采用透析的方法,制备了4种聚合物的纳米胶束,以及载药(阿霉素DOX)胶束,并研究了胶束的自组装行为以及对阿霉素的包裹和释放情况.结果表明MCL单体的引入降低了聚合物的结晶性,提高了对DOX的载药量,加快了DOX的释放.通过激光共聚焦显微镜和流式细胞仪研究了Hep G2肝癌细胞对不同内核结构载药胶束的内吞情况,并用MTT法考察了胶束对细胞的毒害作用,细胞实验发现,Hep G2细胞对载DOX胶束的内吞以及载DOX胶束对细胞的杀伤能力和胶束内核的结构相关.  相似文献   

5.
以异辛酸亚锡为催化剂,通过四臂聚乙二醇(4-armed PEG)引发右旋丙交酯(DLA)或左旋丙交酯(LLA)开环聚合合成四臂PEG-PLA对映体共聚物.通过纳米沉淀的方法制备了四臂PEG-b-PDLA胶束(PDM)、四臂PEG-b-PLLA胶束(PLM)和四臂PEG-b-PDLA/四臂PEG-b-PLLA立体复合胶束(SCM),并对其形貌、粒径、稳定性和立体复合机理等进行系统表征.以阿霉素(DOX)为模型抗肿瘤药物载入胶束中,与PDM和PLM相比,SCM具有更优异的药物负载能力.与DOX相比,载药四臂PEG-PLA胶束,尤其是负载DOX的SCM,表现出更优异的肿瘤细胞增殖抑制效果,作用更持久,并且对正常细胞的毒性较小,从而揭示了其作为潜在抗肿瘤药物载体的良好前景.  相似文献   

6.
《高分子学报》2021,52(10):1298-1307
为了拓展多组分聚合方法在药物载体领域应用,基于铜催化的炔烃多组分聚合设计合成含有二硒键的氧化还原响应型两亲性聚合物,与阿霉素(DOX)在水溶液中通过自组装方式构建纳米载药胶束.通过实验技术手段对纳米载药胶束表征可知,纳米载药胶束的粒径在130 nm左右,临界胶束浓度(CMC)值为0.23 mg/mL,在人体正常生理条件下结构稳定.肿瘤中含有浓度较高的活性氧(ROS)或谷胱甘肽(GSH),聚合物主链中二硒键在氧化还原条件下断裂,导致聚合物降解,DOX从纳米载药胶束中逐渐释放,且累积释放量可达100%,并发现该类载药胶束在GSH环境中药物释放性能优于ROS环境.该工作通过多组分聚合方式可以便捷构建氧化还原双重响应型的两亲性聚合物,在肿瘤微环境中表现出特异的降解性能,为开发设计智能响应型高分子药物载体提供新的思路.  相似文献   

7.
以含苯硼酸酯(PBE)的聚乙二醇单甲醚(mPEG)大分子(mPEG-PBE-OH)为引发剂,引发ε-己内酯(ε-CL)开环聚合,制备了以硼酸酯结构连接的pH敏感两亲性聚合物(mPEG-PBEPCL)。然后,使该聚合物在水相环境中自组装形成"核-壳"结构纳米胶束,并将阿霉素(DOX)负载在胶束内核中,形成载药胶束(DOX@mPEG-PBE-PCL)。通过核磁共振氢谱(~1 H-NMR)、红外光谱(FT-IR)和凝胶渗透色谱(GPC)对聚合物结构进行了表征,通过透射电镜(TEM)和动态光散射(DLS)等对胶束的形貌和粒径进行了表征,通过紫外吸收光谱分析了胶束载药量和载药效率,并对胶束的pH敏感释药性能与体外细胞毒性进行了验证。结果表明:聚合物自组装形成粒径约127nm的球形胶束,对DOX具有较高的负载能力;聚合物具有良好的pH响应性和生物相容性,DOX@mPEG-PBE-PCL能在肿瘤细胞弱酸性环境中释放DOX,有效递送至细胞核;与游离的DOX·HCl相比,DOX@mPEG-PBE-PCL对鼠源黑色素瘤B16F10细胞具有相近的抗肿瘤活性。  相似文献   

8.
以季胺化壳聚糖-O-聚己内酯(TMC-PCL)胶束为载体,用于共负载2种不同亲疏水性质的抗肿瘤物质,阿霉素和吲哚菁绿;并研究了胶束包埋对吲哚菁绿的稳定性和光热效应的影响,以及阿霉素从胶束中的释放行为.结果表明,2种抗肿瘤物质在TMC-PCL胶束中的实际载药量均可达20%,且包封率超过85%.进一步还用MTT法评价了不同载药胶束体系对肿瘤细胞的杀灭作用,发现共负载胶束经近红外激光辐照后,对肿瘤细胞的毒性远高于单载药体系.  相似文献   

9.
杨文华  俞淑英  陈胜  刘也卓  邵正中  陈新 《化学学报》2014,72(11):1164-1168
丝蛋白具有良好的生物相容性, 生物可降解性以及无免疫原性. 利用丝蛋白独特的亲疏水多嵌段共聚物结构特征和构象转变机制, 通过乙醇诱导和冷冻相结合的自组装方法制备得到丝蛋白纳米微球后, 再在纳米微球表面包覆阿霉素, 成功获得了负载阿霉素的丝蛋白纳米载药微球. 该载药丝蛋白纳米微球的尺寸为350~400 nm, 具有圆球形态并且分散性能良好; 其载药率为4.6%, 包封率大于90%, 在磷酸缓释溶液中的释放可达7天以上. 此外, 研究发现其缓释行为具有pH响应性, 在pH=5.0的磷酸缓冲溶液中的缓释量明显大于在pH=7.4的缓冲液中. 体外细胞培养结果显示, 纯丝蛋白纳米微球基本没有细胞毒性; 而负载有阿霉素的丝蛋白纳米微球能明显抑制癌细胞(Hela细胞)的增殖, 且24 h和48 h的培养结果表现出与单纯药物相同的药效. 因此, 该负载阿霉素的丝蛋白纳米微球在临床癌症淋巴化疗方面具有潜在的应用价值.  相似文献   

10.
通过EDC/NHS偶联反应将疏水性肝靶向小分子甘草次酸(GA)连接到天然多糖海藻酸钠(ALG)上,制备了具有双亲性肝靶向药物载体材料(GA-ALG).采用乳化法对广谱抗癌药物阿霉素(DOX)进行包载,得到肝靶向载药纳米粒子( DOX/GA-ALG NPs).利用单光子发射型计算机断层成像技术(SPECT)和药物体内分布...  相似文献   

11.
《中国化学快报》2020,31(6):1427-1431
A novel amphiphilic cationic block copolymer polylysine-b-polyphenylalanine(PLL-b-PPhe) was synthesized and self-assembled into micelles in aqueous solution,then shielded with poly(glutamic acid)(marked as PG/PLL-b-PPhe) to codeliver gene and drug for combination cancer therapy.Here,doxorubicin(DOX) was selected to be loaded into PLL-b-PPhe micelles and the drug loading efficiency was 8.0%.The drug release studies revealed that the PLL-b-PPhe micelles were pH sensitive and the released DOX could reach to 53.0%,65.0%,72.0% at pH 7.4,6.8 and 5.0,respectively.In order to reduce positive charge and cytotoxicity of PLL-b-PPhe micelles,PG was used as shelding,simultaneously condensed with Bcl2 siRNA to form gene carrier system.Compared with PEI,PG/PLL-b-PPhe had excellent gene transfection efficiency,especially when the molar ratio of PLL to PPhe was 30:60 and the mixed mass ratio of PLL-b-PPhe to gene was 5:1.More importantly,DOX and Bcl2 siRNA gene codelivery system displayed remarkable cytotoxicity against B16 F10 cells.Confocal laser scanning microscopy(CLSM) and flow cytometry were used to characterize endocytosis of the codelivery system,and confirmed that both DOX and Bcl2 siRNA had been endocytosed into B16 F10 cells.The above results indicated that gene and drug codelivery was a promising strategy in future cancer therapy.  相似文献   

12.
Four types of drug nanoparticles (NPs) based on amphiphilic hyperbranched block copolymers were developed for the delivery of the chemotherapeutic doxorubicin (DOX) to breast cancer cells. These carriers have their hydrophobic interior layer composed of the hyperbranched aliphatic polyester, Boltorn® H30 or Boltorn® H40, that are polymers of poly 2,2‐bis (methylol) propionic acid (bis‐MPA), while the outer hydrophilic shell was composed of about 5 poly(ethylene glycol) (PEG) segments of 5 or 10 kDa molecular weight. A chemotherapeutic drug DOX, was further encapsulated in the interior of these polymer micelles and was shown to exhibit a controlled release profile. Dynamic light scattering and transmission electron microscopy analysis confirmed that the NPs were uniformly sized with a mean hydrodynamic diameter around 110 nm. DOX‐loaded H30‐PEG10k NPs exhibited controlled release over longer periods of time and greater cytotoxicity compared with the other materials developed against our tested breast cancer cell lines. Additionally, flow cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could internalize the DOX‐loaded H30‐PEG10k NPs, which contributed to the sustained drug release, and induced more apoptosis than free DOX did. These findings indicate that the H30‐PEG10k NPs may offer a very promising approach for delivering drugs to cancer cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A polymeric polyethylenimine (PEI)-based prodrug of anticancer doxorubicin (DOX) (PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug co-delivery in response to the intracellular acid microenvironments in the late endosome/lysosome compartments. The cytotoxicity of PEI-hyd-DOX was evaluated by the MTT assay and the cellular uptake was monitored using confocal laser scanning microscopy. The polymeric prodrug can respond with a high sensitivity to the specific acid condition inside cells, thus permitting the precise biocontrol over intracellular drug liberation with high drug efficacy. The chemical attachment of drug molecules also led to the relatively reduced toxicity and the enhanced transfection efficiency compared with parent PEI. The resulting data adumbrated the potential of PEI-hyd-DOX to co-deliver DOX and therapeutic gene for the combination of chemotherapy and gene therapy.  相似文献   

14.
Zhai X  Huang W  Liu J  Pang Y  Zhu X  Zhou Y  Yan D 《Macromolecular bioscience》2011,11(11):1603-1610
Amphiphilic block copolyphosphates (PEP-b-PIPPs) are synthesized by two-step ROP of cyclic phosphate monomers with different pedant groups. They can spontaneously self-assemble into approximately spherical micelles ranging in size between 89 and 198 nm in water. A typical hydrophobic anti-cancer drug DOX is encapsulated into the micelles. The release rate of DOX slows down with increasing hydrophobic block length of PIPP. DOX-loaded micelles are investigated for the proliferation inhibition of Hela cells and the DOX dose required for 50% cellular growth inhibition is found to be 0.8 μg mL(-1). It is demonstrated that PEP-b-PIPP micelles can be used as a safe and promising drug delivery system.  相似文献   

15.
A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl'om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Tr...  相似文献   

16.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

17.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   

18.
The linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) (CSO-LA) was synthesized in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and the effects of molecular weight of CSO and the charged amount of LA on the physicochemical properties of CSO-LA were investigated, such as CMC, graft ratio, size, zeta potential. The results showed that these chitosan derivatives were able to self-assemble and form spherical shape polymeric micelles with the size range of 150.7–213.9 nm and the zeta potential range of 57.9–79.9 mV, depending on molecular weight of CSO and the charged amount of LA. Using doxorubicin (DOX) as a model drug, the DOX-loaded CSO-LA micelles were prepared by dialysis method. The drug encapsulation efficiencies (EE) of DOX-loaded CSO-LA micelles were as high as about 75%. The sizes of DOX-loaded CSO-LA micelles with 20% charged DOX (relating the mass of CSO-LA) were near 200 nm, and the drug loading (DL) capacity could reach up to 15%. The in vitro release studies indicated that the drug release from the DOX-loaded CSO-LA micelles was reduced with increasing the graft ratio of CSO-LA, due to the enhanced hydrophobic interaction between hydrophobic drug and hydrophobic segments of CSO-LA. Moreover, the drug release rate from CSO-LA micelles was faster with the drug loading. These data suggested the possible utilization of the amphiphilic micellar chitosan derivatives as carriers for hydrophobic drugs for improving their delivery and release properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号