首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction.  相似文献   

2.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds.  相似文献   

3.
The geometric structure of the confacial bioctahedral [Re(2)Cl(9)](z)()(-) anion has been determined by single-crystal X-ray diffraction in two distinct oxidation states, Re(IV)(2) and Re(III)Re(IV). [Bu(4)N][Re(2)Cl(9)] crystallizes in the monoclinic space group P2(1)/m [a/? = 10.6363(3), b/? = 11.420(1), c/? = 13.612(1), beta/deg = 111.18(1), Z = 2], while [Et(4)N](2)[Re(2)Cl(9)] crystallizes in the orthorhombic space group Pnma [a/? = 15.82(1), b/? = 8.55(2), c/? = 22.52(3), Z = 4]. The Re-Re separation contracts from 2.704(1) ? in [Bu(4)N][Re(2)Cl(9)] to 2.473(4) ? in [Et(4)N](2)[Re(2)Cl(9)] (or, equivalently, from 2.725 to 2.481 ? after standard corrections for thermal motions), while the formal metal-metal bond order falls from 3.0 to 2.5. SCF-Xalpha-SW molecular orbital calculations show that, despite the {d(3)d(3)} configuration, the single sigma bond in [Re(2)Cl(9)](-) dominates the observed structural properties. For [Re(2)Cl(9)](2)(-), the 0.23 ? contraction in Re-Re is attributed jointly to radial expansion of the Re 5d orbitals and to diminished metal-metal electrostatic repulsion, which act in concert to make both sigma and delta(pi) bonding more important in the reduced species. Computed transition energies and oscillator strengths for the two structurally defined anions permit rational analysis of their ultraviolet spectra, which involve both sigma --> sigma and halide-to-metal change-transfer absorptions. The intense sigma --> sigma band progresses from 31 000 cm(-)(1) in [Re(2)Cl(9)](-) to 36 400 cm(-)(1) in [Re(2)Cl(9)](2)(-), according to the present assignments. For electrogenerated, highly reactive [Re(2)Cl(9)](3)(-) (where conventional X-ray structural information is unlikely to become available), the dominant absorption band advances to 40 000 cm(-)(1), suggesting further strengthening of the metal-metal sigma bond in the Re(III)(2) species.  相似文献   

4.
Dynamic NMR experiments on trans-[Pt(Cl)(PHCy2)2[P(X)Cy2]]z where X is a lone pair (1, z = 0), H (2, z = +1), S (3, z = 0), or O (4, z = 0) show that the rotation around the P(X)-Pt bond is hindered for all molecules studied, with deltaG++ ranging from 8.2 to 11.0 kcal/mol. The highest value of the series was calculated for trans-[Pt(Cl)(PHCy2)2[P(O)Cy2]] (4) where intramolecular P=O...H-P interactions act as a molecular brake at room temperature. Single-crystal X-ray diffraction confirms the presence of both intra and intermolecular P=O...H interactions in solid 4. In the case of [Pt(Cl)(PHCy2)3]Cl, multinuclear NMR analysis indicates the presence of a P-H...Cl- interaction in aromatic or halogenated solvents which could have also a minor effect on the rotational barrier around the P(X)-Pt bond.  相似文献   

5.
The ammonium salt of the 1:1complex (1) of Ce(III) with alpha(1)-[P(2)W(17)O(61)](10)(-) was prepared and characterized by elemental analysis, vibrational and NMR spectroscopy ((31)P, (183)W), cyclic voltammetry, and single-crystal X-ray analysis (P1; a = 15.8523(9) A, b = 17.4382(10) A, c = 29.3322(16) A, alpha = 99.617(1) degrees, beta = 105.450 (1) degrees, gamma = 101.132(1) degrees, V = 7460.9(7) A(3), Z = 2). The anion consists of a centrosymmetric head-to-head dimer, [[Ce(H(2)O)(4)(P(2)W(17)O(61))](2)],(14-) with each 9-coordinate Ce cation linked to four oxygens of one tungstophosphate anion and to one oxygen of the other anion. On the basis of P NMR spectroscopy, a monomer-dimer equilibrium exists in solution with K = 20 +/- 4 M(-1) at 22 degrees C. Addition of chiral amino acids to aqueous solutions of 1 results in splitting of the (31)P NMR signals as a result of diastereomer formation. No such splitting is observed with glycine or DL-proline, or when chiral amino acids are added to the corresponding complex of the achiral alpha(2)-isomer of [P(2)W(17)O(61)](10)(-). From analysis of the (31)P NMR spectra, formation constants of the two diastereomeric adducts of 1 with L-proline are 7.3 +/- 1.3 and 9.8 +/- 1.4 M(-1).  相似文献   

6.
Treatment of Pt(PPh3)4 with N,N‐dimethylthiocarbamoyl chloride, Me2NC(=S)Cl, in dichloromethane at ?20 °C processes the oxidative addition reaction to produce platinum complex [Pt(PPh3)21‐SCNMe2)(Cl)], 2 with releasing two triphenylphosphine molecules. The 31P{1H} NMR spectra of complex 2 shows the dissociation of the triphenylphosphine ligand to form diplatinum complex [Pt(PPh3)Cl]2(μ,η2‐SCNMe2)2, 3 in which the two SCNMe2 ligands coordinated through carbon to one metal center and bridging the other metal through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

7.
Zhao J  Li RK 《Inorganic chemistry》2012,51(8):4568-4571
A mixed borate and carbonate chloride Ba(2)(BO(3))(1-x)(CO(3))(x)Cl(1+x) was obtained by spontaneous crystallization from a high-temperature melt in open air. It crystallizes in the trigonal crystal system with space group of P3m?1 and lattice constants of a = 5.4708(8) ? and c = 10.640(2) ?. The structure can be viewed as an intergrowth of trigonal Ba(2)Mg(BO(3))(2) (001) slab and (111) slab of the cubic fluorite BaCl(2). During Fourier analysis of the single-crystal X-ray diffraction data, additional electron density was found locating at 1b (0, 0, 1/2) site and attributed to chlorine surplus, which was confirmed by chemical titration. Charge balance of the compound was found, unexpectedly in an acidic borate containing high-temperature melt, by partial CO(3)(2-) group substituting the BO(3)(3-) group. The existence of CO(3)(2-) anion in the crystal was detected by thermogravimetry-mass spectrum analysis and Raman spectrum. The transmittance spectrum shows that the crystal is transparent from ultraviolet to infrared with short-wavelength absorption edge at about 220 nm.  相似文献   

8.
[Sn(9)Pt(2)(PPh(3))](2)(-) (2) was prepared from Pt(PPh(3))(4), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive and has been characterized by ESI-MS, variable-temperature (119)Sn, (31)P, and (195)Pt NMR and single-crystal X-ray diffraction studies. The structure of 2 comprises an elongated tricapped Sn(9) trigonal prism with a capping PtPPh(3), an interstitial Pt atom, a hypercloso electron count (10 vertex, 20 electron) and C(3)(v)() point symmetry. Hydrogenation trapping experiments and deuterium labeling studies showed that the formation of 2 involves a double C-H activation of solvent molecules (en or DMSO) with the elimination of H(2) gas. The ESI-MS analysis of 2 showed the K[Sn(9)Pt(2)(PPh(3))](1)(-) parent ion, an oxidized [Sn(9)Pt(2)(PPh(3))](1)(-) ion, and the protonated binary cluster anion [HSn(9)Pt(2)](1)(-). 2 is highly fluxional in solution giving rise to a single time-averaged (119)Sn NMR signal for all nine Sn atoms but the Pt atoms remain distinct. The exchange is intramolecular and is consistent with a rigid, linear Pt-Pt-PPh(3) rod embedded in a liquidlike Sn(9) matrix. [Sn(9)Ni(2)(CO)](3)(-) (3) was prepared from Ni(CO)(2)(PPh(3))(2), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive, is paramagnetic, and has been characterized by ESI-MS, EPR, and single-crystal X-ray diffraction. Complex 3 is a 10-vertex 21-electron polyhedron, a slightly distorted closo-Sn(9)Ni cluster with an additional interstitial Ni atom and overall C(4)(v)() point symmetry. The EPR spectrum showed a five-line pattern due to 4.8-G hyperfine interactions involving all nine tin atoms. The ESI-MS analysis showed weak signals for the potassium complex [K(2)Sn(9)Ni(2)(CO)](1-) and the ligand-free binary ions [K(2)Sn(9)Ni(2)](1)(-), [KSn(9)Ni(2)](1)(-), and [HSn(9)Ni(2)](1)(-).  相似文献   

9.
Wei M  Willett RD 《Inorganic chemistry》1996,35(22):6381-6385
The compound (dabcoH(2))(2)Cl(3)[CuCl(3)(H(2)O)(2)].H(2)O, where dabco = 1,4-diazabicyclo[2.2.2]octane, has been synthesized, its structure has been determined by single-crystal structural analysis, and its properties have been investigated by powder and single-crystal EPR spectroscopy. The compound crystallizes in space group Pnma at room temperature with unit cell dimensions of a = 15.227(1) ?, b = 7.467(1) ?, and c = 20.166(2) ? with Z = 4. The structure was solved by the Patterson method and refined by full-matrix least-squares to R = 4.3% for 1681 observed reflections (I > 2sigma(I)). The [CuCl(3)(H(2)O)(2)](-) anion exists with a slightly distorted trigonal bipyramidal geometry in which the three Cl atoms lie in equatorial positions and the two water molecules are in axial positions. The distortion appears to be driven by the presence of N-H.Cl hydrogen bonds. The EPR spectra are also consistent with the presence of only a small distortion from trigonal bipyramidal geometry since g(1) approximately g(2) > g(3) approximately 2.0. Analysis of the geometry indicates the distortion consists primarily of a "negative" C(2)(v)() type. Analysis of the thermal parameters supports the supposition that the observed geometry corresponds to disorder over two "positive" C(2)(v)() distortions.  相似文献   

10.
The structure of the dichloride hexahydrate cube, [Cl(2)(H(2)O)(6)](2-), as a salt with the tris(diisopropylamino)cyclopropenium cation, [C(3)(N(i)Pr(2))(3)](+), has been determined by low-temperature X-ray and neutron-diffraction studies. H atoms not involved in O-HCl bonding are disordered over two 0.5 occupancy sites around the O(6) ring. Calculations of the dianionic cube in the gas phase show remarkably good agreement with the solid-state structures with the exception of short O-H bond distances around the O(6) ring that suggests the involvement of a dynamic process. The cluster was also characterised by single-crystal infrared spectroscopy, and vibrational wavenumbers were found to be in good agreement with hydrogen bonding distances. Dibromide and difluoride hexahydrates were also studied theoretically, and OO distances were found to decrease in the order difluoride > dichloride > dibromide > (H(2)O)(6) and as OOO angles increased towards an almost planar ring in (H(2)O)(6). NMR spectra of a chloroform solution of the hydrated salt at -25 °C is consistent with cluster formation.  相似文献   

11.
Lee CM  Chuang YL  Chiang CY  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(26):10895-10904
The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.17 V (vs Cp2Fe/Cp2Fe+) for complex 3, the cyclic voltammograms of complexes [NiIII(SePh)(P(o-C6H4S)3)]-, 2, 4, and 7 display reversible NiIII/II redox processes with E(1/2) = -1.20, -1.26, -1.32, and -1.34 V (vs Cp2Fe/Cp2Fe+), respectively. Compared to complex 2 containing a phenylselenolate-coordinated ligand, complex 4 with a stronger electron-donating ethylthiolate coordinated to the Ni(III) promotes dechlorination of CH2Cl2 to yield complex 3 (kobs = (6.01 +/- 0.03) x 10-4 s-1 for conversion of complex 4 into 3 vs kobs = (4.78 +/- 0.02) x 10-5 s-1 for conversion of complex 2 into 3). Interestingly, addition of CH3CN into complex 3 in the presence of sodium hydride yielded the stable Ni(III)-cyanomethanide complex 7 with a NiIII-CH2CN bond distance of 2.037(3) A. The NiIII-SEt bond length of 2.273(1) A in complex 4 is at the upper end of the 2.12-2.28 A range for the NiIII-S bond lengths of the oxidized-form [NiFe] hydrogenases. In contrast to the inertness of complexes 3 and 7 under CO atmosphere, carbon monoxide triggers the reductive elimination of the monodentate chalcogenolate ligand of complexes 2, 4, and 5 to produce the trigonal bipyramidal complex [NiII(CO)(P(C6H3-3-SiMe3-2-S)3]- (6).  相似文献   

12.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

13.
The title compound 2-(2-chloro-4-nitrophenyl)-4-(4-chlorophenyl)-3a,4- diethoxy- 2,3,3a, 4-tetrahydrochromeno[3,4-d][1,2,3]diazaphosphole 2 (C29H30Cl2N3O7P, Mr = 633.44) was synthesized and its structure was characterized by IR, MS, ^1H NMR, ^13C NMR, ^31p NMR, elemental analysis and single-crystal X-ray diffraction. It crystallizes in triclinic, space group P1^-, a = 9.1549(3), b = 10.7168(4), c = 17.6272(6)A, α = 102.9363(12), β = 90.2713(9), γ = 117.4265(10)°, V= 1484.41(9)A^3, Z= 2,μ(MoKa) = 0.323, F(000) = 658, Z= 2, De= 1.417 g/cm^3, the final R = 0.0687 and wR = 0.2066 for 4943 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that the diazaphospholine ring is almost planar and the two ethoxy groups bonded on the 3a- and 4-positions are in trans configurations. Its antiproliferative activity was also tested in vitro against four human tumor cell lines.  相似文献   

14.
The synthesis and characterization of nido-[1,1,2,2-(CO)(4)-1,2-(PPh(3))(2)-1,2-FeIrB(2)H(5)] (1) is reported. 1 is formed in low yield as a degradation product from the reaction between [{&mgr;-Fe(CO)(4)}B(6)H(9)](-) and trans-Ir(CO)Cl(PPh(3))(2) in THF and is characterized from NMR, IR, and analytical data and by a single-crystal X-ray diffraction study. 1 crystallizes in the monoclinic space group P2(1)/n with a = 12.8622(12), b = 14.3313(12), c = 23.579(3) ?, beta = 97.12(2) degrees, Z = 4, V = 4257.0(8) ?(3), R(1) = 4.83%, and wR(2)()(F(2)) = 12.43%. The heterobimetallaborane structure may be viewed as a derivative of the binary boron hydride nido-[B(4)H(7)](-) and is related to the known homobimetallatetraborane analogues [Fe(2)(CO)(6)B(2)H(6)] and [Co(2)(CO)(6)B(2)H(4)]. 1 exhibits proton fluxionality in its (1)H NMR spectrum, which is related to that found in the latter two compounds.  相似文献   

15.
A novel compound [Cl2Bz(3-MeQl) ](TCNQ) ([Cl2Bz(3-MeQl) ]+ = 1-(3,4-dichlo-robenzyl) 3-methlquinoline cation,TCNQ-= 7,7,8,8-tetracyanoquinodimethanide anion) has been synthesized by the reaction of [Cl2Bz(3-MeQl) ]Br and LiTCNQ,and its structure was determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic,space group P21/c. The structure analysis shows that the anions are stacked into a column with isolated π-dimers,and there is one type of TCNQ entries(TCNQ) ,in agreement with the IR spectra analysis and density functional theory calculations of the compound. The most prominent structural features are the completely segregated stacking columns of the TCNQ- anions and [Cl2Bz(3-MeQl)]+ cations.  相似文献   

16.
Systems containing 1-alkyl-3-methylimidazolium chloride ionic liquid and chlorine gas were investigated. Using relativistic density functional theory, we calculated the formation mechanism of trichloride and hydrogen dichloride anions in an Emim(+)Cl(-) + Cl(2) system. Emim(+)Cl(3)(-) forms without energy barriers. The more stable species ClEmim(+)HCl(2)(-) forms through chlorine substitution. Substitution of a H on the imidazolium ring is much easier than substitution on the alkyl side chains. Infrared, Raman, ESI-MS, and (1)H NMR spectra were measured for EmimCl, BmimCl, and DmimCl with and without Cl(2) gas. The coexistence of Cl(3)(-) and HCl(2)(-), as well as chlorine-substituted cations, was confirmed by detection of their spectroscopic signals in the Cl(2) added ionic liquids. Cl substitution appears less serious for cations with longer side chains.  相似文献   

17.
Hung LI  Wang SL  Kao HM  Lii KH 《Inorganic chemistry》2002,41(15):3929-3934
A mixed-valence vanadium phosphate, NH(4)[(V(2)O(3))(2)(4,4'-bpy)(2)(H(2)PO(4))(PO(4))(2)].0.5H(2)O, has been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c (No. 15) with a = 12.6354(8) A, b = 9.9786(6) A, c = 23.369(1) A, beta = 92.713(1) degrees, and Z = 4 with R(1) = 0.0389. The structure consists of dimers of edge-sharing vanadium(IV,V) octahedra that are connected by corner-sharing phosphate tetrahedra to form layers in the ab-plane, which are further linked through 4,4'-bipyridine pillars to generate a 3-D framework. Magnetic susceptibility confirms the valence of the vanadium atoms. The (31)P MAS NMR spectrum shows a resonance centered at 80 ppm with a shoulder at ca. 83 ppm in an intensity ratio close to 1:2, which correspond to two distinct P sites. The observed large downfield (31)P NMR shifts can be ascribed to magnetic exchange coupling involving phosphorus atoms. The unpaired electron spin density at the phosphorus nucleus was determined from variable-temperature (31)P NMR spectra. The (1)H MAS NMR spectrum was fitted to six components in accordance with the structure as determined from X-ray diffraction.  相似文献   

18.
The reaction of [(AuCl)2dppm] (dppm=Ph2PCH2PPh2) with PhP(SiMe3)2 and P(SiMe3)3 leads to the formation of the gold cluster compound [Au18(P)2(PPh)4(PHPh)(dppm)6]Cl3 (1). The crystal structure investigation shows a central Au7P2 unit formed by two P centered gold tetrahedra sharing the central gold corner. This central unit is surrounded by a 10-membered Au5P5 ring which, together with the remaining six gold atoms, builds two Au4P rectangular and two Au3P trigonal pyramids. The different structure motifs are connected by the phosphine ligands. The compound has been characterized using microanalysis, IR spectroscopy, ESI-MS, and 31P NMR techniques. Luminescence measurements have also been carried out.  相似文献   

19.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

20.
A trinuclear rhenium sulfide cluster complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(3)Cl(6)(PMe(2)Ph)(3)], synthesized from Re(3)S(7)Cl(7), dimethylphenylphosphine, and [(Ph(3)P)(2)N]Cl is readily converted to a bridging SO(2) complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(2)(mu-SO(2))Cl(6)(PMe(2)Ph)(3)], by reaction with O(2). The oxygen atoms on the SO(2) ligand react with phosphines or phosphites to form phosphine oxides or phosphates, and the original cluster complex is recovered. The reaction course has been monitored by (31)P NMR as well as by UV-vis spectroscopy. The catalytic oxygenation of PMePh(2) in the presence of the SO(2) complex shows that turnovers are 8 per hour at 23 degrees C in CDCl(3). The X-ray structures of the cluster complexes are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号