首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
In the present work, we investigated self-assembling of a poly(phenylacetylene) carrying L-valine pendants (PPA-Val) in a water/methanol solution, upon evaporation of the solution on mica, and on the water surface. With intercalation of a fluorescence probe of Ru(phen)2(dppx)2+ (phen = 1,10-phenanthroline, dppx=7,8-dimethyldipyridophenazine) into the hydrophobic cavities associated by the PPA-Val chains, their helical structures were directly detected in solution with an in situ fluorescence microscope. Helical aggregates were observed with AFM upon evaporation of the solvents, suggesting that the helical structures in the solution are the building blocks of the helical aggregates. Self-assembling structures of PPA-Val on the water surface were, however, very different from that formed upon evaporation of its THF solution on the mica surface. The polymer chains associated into a monolayer of extended fibers on the water surface, whereas superhelical fibers formed on the mica surface. Water molecules play a critical role in inducing the polymer to form diverse morphological structures in its bulk solution and on its surface. In solution, the isotropic hydrophobic effect drove the polymer chains to form superhelical aggregates, while on the water surface, the hydrophobic effect concentrated mainly on the lateral part of the polymer, thus giving a monolayer of extended fibers.  相似文献   

2.
Structural and retrostructural analysis of helical dendronized polyacetylenes (i.e., self-organizable polyacetylenes containing first generation dendrons or minidendrons as side groups) synthesized by the polymerization of minidendritic acetylenes with [Rh(nbd)Cl]2 (nbd = 2,5-norbornadiene) reveals an approximately 10% change in the average column stratum thickness (l) of the cylindrical macromolecules with a chiral periphery, through which a strong preference for a single-handed screw-sense is communicated. The cylindrical macromolecules reversibly interconvert between a three-dimensional (3D) centered rectangular lattice (Phi r-c,k) exhibiting long-range intracolumnar helical order at lower temperatures and a two-dimensional (2D) hexagonal columnar lattice (Phi h) with short-range helical order at higher temperatures. A polymer containing chiral, nonracemic peripheral alkyl tails is found to have a larger l as compared to the achiral polymers. In methyl cyclohexane solution, the same polymer exhibits an intense signal in circular dichroism (CD) spectra, whose intensity decreases upon heating. The observed change in l indicates that the chiral tails alter the polymer conformation from that of the corresponding polymer with achiral side chains. This change in conformation results in a relatively large free energy difference (DeltaGh) favoring one helix-sense over the other (per monomer residue). The capacity to distort the polymer conformation and corresponding free energy is related to the population of branches in the chiral tails and their distance from the polymer backbone by comparison to recently reported first and second generation dendronized polyphenylacetylenes.  相似文献   

3.
It has been demonstrated that a chiral, insulated poly(p-phenylene ethynylene) (PPE) nano-wire can be created by a polymer wrapping method utilizing natural β-1,3-glucan polysaccharide schizophyllan (SPG). Spectroscopic and microscopic measurements have revealed that PPE adopts a rigid conformation and exists as one piece in the helical hollow constructed by two SPG chains. Moreover, the inherent helical structure of SPG can induce the chiral twisting of the insulated PPE backbone. It is believed that the present system is really applicable for designing novel chiral sensors based on PPE.  相似文献   

4.
A stereoregular poly(phenylacetylene) bearing an N,N‐diisopropylaminomethyl group as the pendant (poly‐ 1 ) changed its structure into the prevailing one‐handed helical conformation upon complexation with optically active acids in water. The complexes exhibited induced circular dichroism (ICD) in the UV/Vis region of the polymer backbone. Poly‐ 1 is highly sensitive to the chirality of chiral acids and can detect a small enantiomeric imbalance in these acids, in particular, phenyl lactic acid in water. For example, a 0.005 % enantiomeric excess of phenyl lactic acid can be detected by CD spectroscopy. The observed ICD intensity and pattern of poly‐ 1 were dependent on the temperature and concentration of poly‐ 1 , probably due to aggregations of the polymer at high temperature as revealed by dynamic light scattering and AFM. On the basis of the temperature‐dependent ICD changes, the preferred chiral helical sense of poly‐ 1 was found to be controlled by noncovalent bonding interactions by using structurally different enantiomeric acids.  相似文献   

5.
Chiral columns formed by a helical cis‐polyphenylacetylene (PPA) derivative P1 are reversibly switched during a phase transition between two chiral columnar phases: the frustrated Φh3D‐SL phase containing four chains at low temperature and a hexagonal columnar phase Φh at high temperature, accompanied by a simultaneous conformational change. The helix–helix transition along the PPA backbone during the Φh3D‐SL‐Φh transition makes the uniaxially oriented P1 capable of reversibly and reproducibly elongating (132 %) upon heating and contracting upon cooling, exhibiting the behavior of a two‐way shape actuator.  相似文献   

6.
The straightforward syntheses of polyisocyanides containing the alanine–cysteine motif in their side chains have been achieved. Detailed characterization of the polymers revealed a well‐defined and highly stable helical conformation of the polyimine backbone responsible for the formation of rodlike structures of over one hundred nanometers. The 41 helix is further stabilized by β‐sheet‐like interactions between the peptide arms. As a result, the cysteine sulfur atoms are regularly aligned along the polymer axis, which provides a unique platform for the scaffolding of various entities by using versatile click‐chemistry postmodification approaches. For instance, pyrene derivatives were introduced through thio‐specific reactions involving either maleimide, iodoacetamide, or thioester groups, leading to arrays of stacked chromophores with excimer‐like emission. A water‐soluble cysteine‐rich polyisocyanide was successfully biotinylated and coupled to streptavidin.  相似文献   

7.
We have found a simple and novel synthetic method for obtaining a chiral polymer from an achiral monomer by using a chiral catalytic system. The chirality of the polymer was caused only by a one-handed helical backbone, and the polymer had no other chiral structures in the side groups. In addition, the helical conformation was stable in solution by itself. This is the first example of helix-sense-selective polymerization of a substituted acetylene. The stability of the helicity was found to be caused by intramolecular hydrogen bonds.  相似文献   

8.
Two tetrapeptide derivatives [peptide A (Boc–Ala–Ile–Ile–Gly–OMe) and peptide B (Boc–Ala–Ile–Leu–Ser–OMe)], that take helical turn conformation in solution, were shown to form monolayer at the air/water interface. Circular dichroism (CD) measurements indicate that peptide A has more helical turn propensity than peptide B in sodium dodecyl sulphate (SDS) micelles. Langmuir–Blodgget film study of peptides A and B suggest that both the peptides form stable monolayer at the air/water interface. Spectroscopic investigations reveal that peptide A forms helical turn assemblage on transferring the film into hydrophilic quartz and hydrophobic ZnSe surfaces. Whereas, peptide B adopts β-sheet structure on hydrophilic surface and a mixture of β-sheet and helical turn conformation on hydrophobic surface.  相似文献   

9.
《Tetrahedron: Asymmetry》1998,9(9):1457-1477
Some recent developments in the use of main chain chiral polymer catalysts are summarized. These polymers are different from the traditional polymer catalysts that are prepared by anchoring monomeric chiral catalysts to an achiral polymer backbone. Three classes of synthetic main chain chiral polymers are discussed including: (1) helical polymers represented by polypeptides; (2) polymers with flexible chiral chains such as polyesters and polyamides; and (3) polymers of rigid and sterically regular chiral chains represented by chiral conjugated polybinaphthyls. Some of these polymer catalysts have shown high enantioselectivity in asymmetric organic transformations.  相似文献   

10.
采用两性离子型的催化剂Rh+[η-C6H5(nbd)B-(C6H5)3]实现了含手征性中心和硫代乙酸酯基的苯乙炔单体的聚合,用红外光谱、核磁共振氢谱和紫外-可见吸收光谱表征了聚合物的结构,证实得到了预期产物.聚合物的重均分子量达到了73200,在氯仿、四氢呋喃、二氯甲烷等有机溶剂中有良好的溶解性能.聚合物热稳定性高,在氮气氛围下热分解温度为336℃,在900℃的高温下有31%的重量残留.用扫描电子显微镜观察发现,在浓度为5.0mg/mL的聚合物氯仿溶液形成的薄膜中有微米长度的棒状有序结构;由浓度为0.5mg/mL的聚合物氯仿稀溶液形成的薄膜表面有晶体析出.用透射电子显微镜观察聚合物在氯仿溶液中缓慢形成的微结构,发现当浓度高于1.0mg/mL时,聚合物在碳膜上形成铺展的薄膜,薄膜由纳米尺寸的丝带状结构取向排列而成;当浓度低于0.5mg/mL时,聚合物形成具有规则几何形态的微晶体.在聚合物热稳定性的显著提高和有序微结构的形成过程中,聚苯乙炔侧链中的手征性中心发挥了关键的作用.  相似文献   

11.
Cationic Gemini surfactant at the air/water interface   总被引:2,自引:0,他引:2  
The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the alkyl chains reorient from tilting to vertical, forming surface micelles dispersed in the network-like ridges due to the strong interaction among film molecules.  相似文献   

12.
This article presents two novel artificial helical polymers, substituted polyacetylenes with urea groups in side chains. Poly( 4 ) and poly( 5 ) can be obtained in high yields (≥97%) and with moderate molecular weights (11,000–14,000). Poly( 4 ) contains chiral centers in side chains, and poly( 5 ) is an achiral polymer. Both of the two polymers adopted helical structures under certain conditions. More interestingly, poly( 4 ) exhibited large specific optical rotations, resulting from the predominant one‐handed screw sense. The helical conformation in poly( 5 ) was stable against heat, while poly( 4 ) underwent conformational transition from helix to random coil upon increasing temperature from 0 to 55 °C. Solvents had considerable influence on the stability of the helical conformation in poly( 4 ). The screw sense adopted by the helices was also largely affected by the nature of the solvent. Poly( 4 ‐co‐ 5 )s formed helical conformation and showed large optical rotations, following the Sergeants and Soldiers rule. By comparing the present two polymers (with one ? N? H groups) with the three polymers previously reported (with two ? N? H groups in side chains), the nature of the hydrogen bonds formed between the neighboring urea groups played big roles in the formation of stable helical conformation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4112–4121, 2008  相似文献   

13.
A water soluble, meta-linked poly(phenylene ethynylene) featuring chiral and optically active side groups based on L-alanine (mPPE-Ala) has been studied by using absorption, fluorescence, and circular dichroism spectroscopy. Studies of mPPE-Ala in methanol/water solvent mixtures show that the polymer folds into a helical conformation, and the extent of helical folding increases with the volume % water in the solvent. The presence of the helical conformation is signaled by the appearance of a broad, excimer-like visible fluorescence band, combined with a strong bisignate circular dichroism signal in the region of the pi,pi absorption of the polymer backbone. The circular dichroism signal exhibits negative chirality, suggesting that the left-handed (M-form) of the helix is in enantiomeric excess. Binding of the metallointercalator [Ru(bpy)2(dppz)]2+ (where bpy = 2,2-bipyridine and dppz = dipyrido[3,2-a:2',3'-c]phenazine) with the helical polymer is accompanied by the appearance of the orange-red photoluminescence from the metal complex. This effect is directly analogous to that observed when [Ru(bpy)2(dppz)]2+ binds to DNA via intercalation, suggesting that the metal complex binds to mPPE-Ala by intercalating between the pi-stacked phenylene ethynylene residues. Cationic cyanine dyes also bind to the periphery of the helical polymer in a manner that is interpreted as "groove binding". A circular dichroism signal is observed that is believed to arise from exciton coupling within the chiral cyanine dye chromophore aggregate that is formed as the dye molecules are oriented by the helical mPPE-Ala "template".  相似文献   

14.
Novel sets of helical poly(phenylacetylene)s bearing a chiral ruthenium (Ru) complex with opposite chirality (Δ and Λ forms) as a bulky pendant (poly- 1 and poly- 2 ) were synthesized through the polymerization of the corresponding optically pure phenylacetylenes with a rhodium catalyst, and their structures in solution and morphology on solid substrates were investigated with NMR, ultraviolet–visible, and circular dichroism (CD) spectroscopies and with atomic force microscopy (AFM), respectively. The obtained cis–transoidal polymers (poly- 1 and poly- 2 ) showed characteristic Cotton effects in the region of metal-to-ligand charge transfer of the chiral Ru pendants. Poly- 1 and poly- 2 were thought to have a predominantly one-handed helical conformation induced by the chiral pendants. However, the apparent Cotton effects derived from the helically twisted π-conjugated polymer backbone could not be observed, probably because of the strong chiral chromophoric pendants. However, in the AFM images, the helical polymers adsorbed on mica could be easily discerned as isolated strands, and the visualization and discrimination of the right- and left-handed helical structures of the chiral polymers were achieved by high-resolution AFM imaging. On the basis of the AFM observations together with the CD measurements and computational calculation results, possible structures of poly- 1 and poly- 2 were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4621–4640, 2004  相似文献   

15.
The behavior at the air/water interface and the structures of Langmuir–Blodgett monolayers at different surface pressures of rod–coil molecules, which consist of a Y‐shaped rigid aromatic segment containing peripheral tetradecyloxy groups and a flexible poly(ethylene oxide) (PEO) chain with 17, 21, 34, or 45 repeating ethylene oxide units (Y17, Y21, Y34, and Y45), were investigated. For the Y21 and Y34 molecules, AFM images revealed two kinds of cylindrical nanoarchitectures formed upon compression. The nanostructured films were further investigated by UV/Vis and FTIR spectroscopy. The formation of the cylindrical nanoarchitectures was due to different tilting angles offered by the mismatch of the cross‐sectional areas of the PEO chain and the benzene ring with attached alkyl chains, and the different PEO contents of the molecules. The multiple π–π stacking and hydrophobic interactions provide exceptional stability of the nanostructures and allow them to be preserved in the course of flipping. For the shortest PEO chain of the Y17 molecule, spontaneous aggregation occurred. The Y45 molecule revealed the formation of 2D circular domains caused by entanglement of the longest PEO chains and coiling at the air/water interface. In addition, an interesting vortical morphology was obtained for the Y21 molecule upon deposition of the film onto a mica substrate, which indicates that the substrate chemistry also has an effect on the morphologies during the film‐transfer process.  相似文献   

16.
A water-soluble amphiphilic poly(phenylacetylene) bearing the bulky aza-18-crown-6-ether pendants forms a one-handed helix induced by l- or d-amino acids and chiral amino alcohols through specific host-guest interactions in water. We now report that such an induced helical poly(phenylacetylene) with a controlled helix sense can selectively trap an achiral benzoxazole cyanine dye among various structurally similar cyanine dyes within its hydrophobic helical cavity inside the polymer in acidic water, resulting in the formation of supramolecular helical aggregates, which exhibit an induced circular dichroism (ICD) in the cyanine dye chromophore region. The supramolecular chirality induced in the cyanine aggregates could be further memorized when the template helical polymer lost its optical activity and further inverted into the opposite helicity. Thereafter, thermal racemization of the helical aggregates slowly took place.  相似文献   

17.
Here we show the first example of a helical polyacetylene that forms a lyotropic liquid crystal (LC) through a hierarchical amplification of a macromolecular helicity process in water. The macromolecular helicity with an excess of one helical sense was first induced in the positively charged polyacetylene upon complexation with an extremely small oppositely charged nonracemic dopant through electrostatic interaction in water. Subsequently, the helicity was significantly amplified in the polymer backbone as an almost perfect single-handed helix through self-assembly into supramolecular helical arrays in a lyotropic cholesteric state. The present results will allow the detection of a tiny imbalance in chiral molecules and also provide new approaches for the design of novel water-soluble helical architectures and the construction of new chiral materials in areas such as biotechnology and materials science.  相似文献   

18.
Effect(s) of organic solvents on an all beta-sheet protein are investigated to understand the influence of backbone conformation on protein aggregation. Results obtained in the present study reveal that protein aggregation is accompanied by the formation of non-native beta-sheet conformation. In contrast, induction of non-native helical segments in the protein is found to inhibit aggregation. The differential effects of the secondary structures on protein aggregation are proposed to stem from the disparity in the nature of the hydrogen bonds and packing of the side chains of hydrophobic residues in the beta-sheet and alpha-helix conformation. In our opinion, the results of the present study provide useful hints to develop methods to alleviate the problems of both in vitro and in vivo protein aggregation.  相似文献   

19.
Wang S  Marchant RE 《Macromolecules》2004,37(9):3353-3359
We describe a series of fluorocarbon surfactant polymers designed for modifying fluorocarbon surfaces such as poly(tetrafluoroethylene). Novel fluorocarbon surfactant polymers poly(N-vinyldextranaldonamide-co-N-vinylperfluoroundecanamide), in which hydrophilic dextran oligosaccharides and hydrophobic perfluoroundecanoyl groups were incorporated sequentially onto a poly(vinylamine) backbone, were synthesized and characterized by FT-IR, NMR, and XPS spectroscopy. By adjusting the feed ratio of dextran to fluorocarbon branches, surfactant polymers with different hydrophilic/hydrophobic balances were prepared. The surface activity of the surfactants at the air/water interface was demonstrated by significant reductions in water surface tension. Surfactant adsorption and adhesion at the solid PTFE/aqueous interface were examined under well-defined dynamic flow conditions, using a rotating disk system. The surface activity at the air/water interface and adhesion stability on PTFE under an applied shear stress both increase with increasing density of fluorocarbon branches on the polymer backbone. The results show that stable surfactant adhesion on PTFE can be achieved by adjusting the hydrophilic dextran to hydrophobic fluorocarbon branch ratio.  相似文献   

20.
Splitting it up: Excellent agreement between the experimental and the quantum-chemically simulated Raman optical activity (ROA) spectrum of (+)-poly(trityl methacrylate) shows that the polymer backbone adopts a left-handed helical conformation while the trityl side groups display a left-handed propeller conformation. Thus ROA can be used to determine the complete structure of synthetic chiral polymers in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号