首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assemblying behaviors of L-alanine methyl ester-containing polyphenylacetylene (PPA-Ala, in Chart 1 ) were investigated upon the evaporation of its solvent on mica and on air/water interfaces. The introduction of chiral amino acid attachments to the polyphenylacetylene backbone induced a helical conformation of the backbone, which was stabilized by various noncovalent interactions, especially hydrophobic effect and hydrogen bonds. The helicity of the polymer was further amplified in its higher-order self-assemblies as the formation of helical fibers on the surface of mica upon natural evaporation of its THF solution. By LB technique, the polymer chains were guided to form ordered parallel ridges and highly aligned, with their helical conformation still remaining. The reorganization of the chiral polymer chains on air/water interface was associated with the additional hydrophobic effect of PPA-Ala on an air/water interface. The polymer backbones had to adopt different arrangements to minimize their contact with water, and this adjustment led to the formation of aligned polymer ridges under proper surface pressure.  相似文献   

2.
Flat-lying, densely packed DNA monolayers in which DNA chains are well organized have been successfully constructed on a mica surface by dropping a droplet of a DNA solution on a freshly cleaved mica surface and subsequently transferring the mica to ultrapure water for developing. The formation kinetics of such monolayers was studied by tapping mode atomic force microscopy (TMAFM) technique. A series of TMAFM images of DNA films obtained at various developing times show that before the sample was immersed into water for developing the DNA chains always seriously aggregated by contacting, crossing, or overlapping and formed large-scale networks on the mica surface. During developing, the fibers of DNA networks gradually dispersed into many smaller fibers up to single DNA chains. At the same time, the fibers or DNA chains also experienced rearrangement to decrease electrostatic repulsion and interfacial Gibbs free energy. Finally, a flat-lying, densely packed DNA monolayer was formed. A formation mechanism of the DNA monolayers was proposed that consists of aggregation, dispersion, and rearrangement. The effects of both DNA and Mg2+ concentration in the formation solution on DNA monolayer formation were also investigated in detail.  相似文献   

3.
4.
Morphological and spectroscopic properties of pseudoisocyanine (PIC) J aggregates produced at mica/solution interfaces have been characterized by absorption/fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. Addition of organic solvents (1-propanol (PrOH) or 1,4-dioxane (Dox)) into aqueous solutions of the PIC dye induced a transition of the morphology of the interfacial J aggregates. The characteristic feature of this transition is the thickness (or height) change of the aggregate domain layers from three-dimensions to two-dimensions: The domain area of the J aggregates was dependent on the amount of the organic cosolvent, while the domain thickness was dependent on the type of the cosolvent. In pure aqueous solution, the J aggregates at the mica/water interface had a three-dimensional structure with the height of approximately 3 nm (multilayer structure). In mixed solvents of PrOH/water or Dox/water (5 or 10 vol%), the interfacial aggregates became a bilayer or monolayer structure, respectively, assuming that PIC molecules are adsorbed on their molecular plane perpendicular to the mica surface. Meanwhile, optical properties (band width and peak position) of the J band were invariant upon addition of the organic cosolvents, suggesting that molecular packing in the J aggregates is essentially unchanged. These results revealed that spectroscopic properties of the interfacial PIC J aggregates were determined only by the lateral (two-dimensional) interaction within the adsorbed monolayer of PIC molecules on mica, and interlayer interaction in the multilayered J aggregate was consequently small.  相似文献   

5.
Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C 12 or C 18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY (1)H NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates. AFM studies of the solutions dip-coated onto mica or drop-casted onto HOPG revealed that the morphologies of the assemblies formed were surface-tuned. On mica, fiber-like assemblies of short stacks of J-aggregates were observed. The strong influence of the mica's epitaxy on the orientation of the fibers suggested a surface-assisted assembly process. On HOPG, interactions between the alkyl chains and the graphite surface resulted in the stabilization and trapping of monomer species followed by their subsequent association into coordination polymers on the surface. Interdigitation of the alkyl chains of separate polymer strands induced lateral association of wires to form islands that grew preferentially upon drop-casting and slow evaporation. Clusters of laterally assembled wires were observed for the more mobile functionalized porphyrins bearing C 12 chains.  相似文献   

6.
A polysoap poly(sodium 11-acrylamidoundecanoate) was synthesized from sodium 11-acrylamidoundecanoate in water. The molecular weight of the polymer was determined by gel permeation chromatography and static light scattering techniques. Fluorescence probe studies in water have suggested the formation of hydrophobic domains within the same polymer chain. The microenvironment of the hydrophobic domains is highly ordered. The packing of the hydrocarbon chains in the hydrophobic domains formed by intra-chain association increases upon decrease of pH. The transmission electron micrograph revealed large vesicular aggregates in dilute aqueous solution. Temperature-dependent fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene probe demonstrated stability of the vesicles.  相似文献   

7.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

8.
We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.  相似文献   

9.
The assembly of imidazole‐functionalized phenanthroline‐strapped zinc porphyrins (ZnPorphen) with alkyl or polyethylene glycol (PEG) side chains was studied in solution and by AFM after casting on highly oriented pyrolytic graphite (HOPG) or mica. The nature of the solvent and its evaporation time influenced the morphology of the objects observed. On HOPG, short rods of about 100 nm were observed after fast evaporation of solutions of the alkyl derivatives in CHCl3, THF, or pyridine, whereas islands of aligned rows of longer wires were obtained from methylcyclohexane (MCH). Slow evaporation of MCH led to a three‐dimensional assembly. The PEG porphyrin assembled into short wires on HOPG or fibers on mica after slow evaporation of solutions in THF. This study shows the role of surface–molecule interactions in the interfacial assembly of ZnPorphen derivatives and contributes to understanding the parameters that control their noncovalent assembly into molecular wires on a surface.  相似文献   

10.
Surfactant molecules containing hydrophobic long alkyl chains and hydrophilic groups can organize into various micellar structures both in bulk solution and at interface. However, because of the dynamical nature of surfactant micelles, efforts directed at fixing their structures in bulk solution by polymerization have met with limited success. Herein, we report a unique and simple method of stabilizing surface micelles of a low molecular weight surfactant 11-acryloyloxyundecyltriethylammonium bromide (AUTEAB) through in situ intramicellar polymerization on the mica surface. Atomic force microscopy (AFM) observations show that the cylindrical micellar structure formed by AUTEAB monomers at the mica/water interface is preserved after the in situ polymerization, and the stability of the polymerized surface micelles is greatly enhanced compared with that of the unpolymerized ones.  相似文献   

11.
Lian  Sheng  LING  Zhi  Ke  HE 《中国化学快报》2003,14(3):300-303
A new method for the study of triplex DNA is established according the fluorescence enhancement of molecular “Light Switch“ complex of Ru(phen)2(dppx)^2 when it intercalate into triplex DNA.Because the fluorescence intensity of Ru(phen)2(dppx)^2 bonded to triplex DNA is in ths case higher than that bonded to duplex DNA in certain range of DNA concentration,the method is much more sensitive than other methods reported previously.  相似文献   

12.
Molecular modelling calculations based on experimental data obtained in solution and in small unilamellar vesicles are used to study interactions between amphiphilic basic peptides and membranes. The behaviour of such peptides during the initial and final stages of the adsorption process is our primary interest. Primary sequences of 20 amino acid residues were designed with equal numbers of basic lysines and hydrophobic leucines in order to get an amphipathic α helix. First, in solution, aggregates with an increasing number (up to nine) of helical monomers were built up and the hydrophobic solvent accessible surface per monomer was analysed on energy minimised structures. This showed that aggregates with 5–8 of monomers should be equally probable, in reasonable accordance with experimental data. In addition, models of membranes with 21 dimyristoyl-phosphatidylcholine lipids were constructed; amphiphilic peptides were merged into these assemblies with their axes parallel to the monolayer surface and the whole lipid/peptide complex was submitted to a few steps of simulated annealing and further energy minimisation techniques in order to equilibrate alkyl chains in the vicinity of the peptide. These simulations yield an estimation of the penetration depth for the peptide in the monolayer of ∼3.2 ?, whereas experimental approaches to this question were not productive. The modification in the peptide net electrical charge by interchanging Leu in Lys residues in such systems is also examined: for low-charged peptides the penetration depth increases. Received: 20 May 1998 / Accepted : 3 September 1998 / Published online: 7 December 1998  相似文献   

13.
An amphiphilic heteroarm star polymer containing 12 alternating hydrophobic/hydrophilic arms of polystyrene (PS) and poly(acrylic acid) (PAA) connected to a well-defined rigid aromatic core was studied at the air-water and the air-solid interfaces. At the air-water interface, the molecules spontaneously form pancakelike micellar aggregates which measure up to several microns in diameter and 5 nm in thickness. Upon reduction of the surface area per molecule to 7 nm2, the two-dimensional micelles merged into a dense monolayer. We suggest that confined phase separation of dissimilar polymer arms occurred upon their segregation on the opposite sides of the rigid disklike aromatic core, forcing the rigid cores to adopt a face-on orientation with respect to the interface. Upon transfer onto solid supports the PS chains face the air-film interface making it completely hydrophobic, and the PAA chains were found to collapse and form a thin flattened underlayer. This study points toward new strategies to create large 2D microstructures with facial amphiphilicity and suggests a profound influence of star molecular architecture on the self-assembly of amphiphiles at the air-water interface.  相似文献   

14.
Novel trimeric cationic surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD) has been synthesized, and its self-assembly morphology on a mineral surface has been studied. From its micelle solution, highly ordered bilayer patterns are obtained on a mica surface, whereas randomly distributed bilayer patches are formed on a silica substrate. The highly ordered bilayer patterns on mica are first caused by the matching of the special structure of DTAD headgroups with the negative charge sites on mica, which leads to the specific nucleation of DTAD on the mica surface via electrostatic interaction. Furthermore, hydrophobic interaction among the DTAD hydrocarbon chains results in the formation of the bilayer structure, and intermolecular hydrogen-bonding among the DTAD headgroups promotes the directional growth of such bilayer structures.  相似文献   

15.
From AFM observation of transferred films on mica, it has been found that mixed monolayers of hexadecanol with poly(vinyl stearate) give a film with a less-defective and flat surface by spreading from bulk solids of those mixtures onto a water surface without using any organic solvent. As a result, those mixed monolayers have a considerably larger effect on retardation of water evaporation in comparison with those spread from the solution of the mixtures. After the saturated surface pressure of the mixed monolayer spread from the bulk solids, an enhanced effect on retardation of water evaporation was found, accompanied by the preferential spreading of hexadecanol and the gradual reduction of defects in the mixed monolayer.  相似文献   

16.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

17.
This study investigates the fluorescence quenching of a poly(p-phenyleneethynylene) (1) based polyelectrolyte by positively charged and neutral macromolecules. This work shows that the change in the fluorescence yield of 1 depends on a number of factors, including electrostatic, hydrophobic, and energy transfer interactions with the quencher and also changes in the solution conditions such as concentration and ionic strength. The fluorescence quenching is attributed to the formation of aggregates that form upon addition of different quenchers to a solution of 1 and/or the solution conditions. The extent of 1's aggregation is shown to depend on the type of interaction between the polymer and the quencher, the concentration of the polymer, and the ionic strength of the solution.  相似文献   

18.
The random coil conformation of an isolated conventional synthetic polymer chain was clearly imaged by atomic force microscopy (AFM). The sample used was a poly(styrene)-block-poly(methyl methacrylate) diblock copolymer. A very dilute solution of the copolymer with benzene was spread on a water surface. The structure thus formed on water was subsequently transferred and deposited onto mica at various surface pressures and observed under AFM. The AFM images obtained with films deposited at a low surface pressure (<0.1 mN/m) showed a single polystyrene (PS) block chain aggregated into a single PS particle with a single poly(methyl methacrylate) (PMMA) block chain emanating from the particle. Immediately after the deposition, the single PMMA block chain aggregated to form a condensed monolayer around the polystyrene particles. However, after exposing the deposited film to highly humid air for 1 day, the PMMA chains spread out so that the single PMMA block chain could be identified as a random coil on the substrate. The thin water layer formed on the mica substrate in humid air may enable the PMMA block chain to be mobilized on the substrate, leading to the conformational rearrangement from the condensed monolayer conformation to an expanded and elongated coil. The elongation of the PMMA chain was highly sensitive to the humidity; the maximum elongation was obtained at 79% relative humidity. The elongation was a slow process and took about 20 h.  相似文献   

19.
Two tetrapeptide derivatives [peptide A (Boc–Ala–Ile–Ile–Gly–OMe) and peptide B (Boc–Ala–Ile–Leu–Ser–OMe)], that take helical turn conformation in solution, were shown to form monolayer at the air/water interface. Circular dichroism (CD) measurements indicate that peptide A has more helical turn propensity than peptide B in sodium dodecyl sulphate (SDS) micelles. Langmuir–Blodgget film study of peptides A and B suggest that both the peptides form stable monolayer at the air/water interface. Spectroscopic investigations reveal that peptide A forms helical turn assemblage on transferring the film into hydrophilic quartz and hydrophobic ZnSe surfaces. Whereas, peptide B adopts β-sheet structure on hydrophilic surface and a mixture of β-sheet and helical turn conformation on hydrophobic surface.  相似文献   

20.
Surface complexing (i.e., metal-bridged polymerization in this study) of a three-armed amphiphilic compound with metal-scavenging properties has been investigated using the surface pressure-area (π-A) isotherms of a Langmuir monolayer from the subphase. Inductively coupled plasma mass spectrometry (ICP-MS) was also carried out on eluted solutions from corresponding multilayers of the solid. Furthermore, the molecular arrangement and surface morphology of organized molecular films of the resultant comb polymer were estimated by in-plane and out-of-plane X-ray diffraction (XRD) and by atomic force microscopy. From an analysis of the wide-angle X-ray diffraction of the corresponding monomer in the bulk, the long hydrocarbon chains are observed to pack hexagonally in the solid state. Compared to their monolayer on distilled water as the subphase, a polymerized monolayer on a buffer solution containing Cd(2+) ions is remarkably expanded at 15 °C. From ICP-MS and IR measurements, it is found that this monolayer stoichiometrically contains Cd(2+) ions on the -SH group. It is found by XRD that highly ordered layer structures and regular 2D lattices are constructed in the organized molecular films of the Cd-bridged comb polymer. Furthermore, the surface morphology of Langmuir-Blodgett films fabricated from the monolayers on a buffer solution containing Cd(2+) and Pd(2+) shows flat and smooth domains upon metal scavenging and polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号