首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
二维原子晶体材料具有与石墨烯相似的晶格结构和物理性质,为纳米尺度器件的科学研究提供了广阔的平台.研究这些二维原子晶体材料,一方面有望弥补石墨烯零能隙的不足;另一方面继续发掘它们的特殊性质,有望拓宽二维原子晶体材料的应用领域.本文综述了近几年在超高真空条件下利用分子束外延生长技术制备的各种类石墨烯单层二维原子晶体材料,其中包括单元素二维原子晶体材料(硅烯、锗烯、锡烯、硼烯、铪烯、磷烯、锑烯、铋烯)和双元素二维原子晶体材料(六方氮化硼、过渡金属二硫化物、硒化铜、碲化银等).通过扫描隧道显微镜、低能电子衍射等实验手段并结合第一性原理计算,对二维原子晶体材料的原子结构、能带结构、电学特性等方面进行了介绍.这些二维原子晶体材料所展现出的优异的物理特性,使其在未来电学器件方面具有广阔的应用前景.最后总结了单层二维原子晶体材料领域可能面临的问题,同时对二维原子晶体材料的研究方向进行了展望.  相似文献   

2.
文章简要介绍了材料科学研究中被广泛应用的透射电子显微(TEM)技术及其在多铁材料研究中的应用,并给出了几个典型案例:利用球差矫正原子分辨扫描透射电子显微术(STEM),并和电子能量损失谱(EELS)相结合,分析多铁异质结界面处的原子分布、离子价态和化学键的变化;结合球差矫正原子分辨透射电子显微图像(HRTEM)和STEM图像,分析多铁材料中的局域对称性破缺和电极化特性;利用原位变温及电/磁场加载技术,研究多铁材料中的结构相变和电畴/磁畴的动态演变特性。文章特别指出,现代透射电子显微学是全面分析理解多铁材料局域微结构,探讨多铁耦合机制及其物理根源的有效手段。  相似文献   

3.
万威  唐春艳  王玉梅  李方华 《物理学报》2005,54(9):4273-4278
借助高分辨电子显微像结合解卷处理的方法研究了GaN晶体中的堆垛层错.简要介绍了高分辨电子显微像的解卷处理原理,指出通过解卷处理可以把本来不直接反映待测晶体结构的高分辨电子显微像转换为直接反映晶体结构的图像.用高分辨电子显微像观察了GaN晶体中的堆垛层错,对高分辨电子显微像作了解卷处理.在解卷像上清晰可见缺陷核心的原子排列情况,据此确定了层错的类型.此外,还讨论了解卷处理在研究晶体缺陷中的效用. 关键词: GaN 晶体缺陷 高分辨电子显微学 解卷处理  相似文献   

4.
胡倩颖  许杨 《物理学报》2022,(12):124-138
二维过渡金属硫族化合物作为二维半导体材料领域研究的重要分支,凭借较强的光-物质相互作用和独特的自旋-谷锁定等特性,吸引了广泛而持久的关注.单层的二维过渡金属硫族化合物半导体具有直接带隙,在二维的极限下,由于介电屏蔽效应的减弱,电荷间的库仑相互作用得到了显著的增强,其光学性质主要由紧密束缚的电子-空穴对—激子主导.本文简单回顾了近年来二维过渡金属硫族化合物光谱学的研究历程,阐述了栅压和介电环境对激子的调制作用,之后重点介绍了一种新颖的激子探测方法.由于激发态激子(里德伯态)的玻尔半径远大于单原子层本身的厚度,电子-空穴对之间的电场线得以延伸到自身之外的其他材料中.这使得二维半导体材料的激子可以作为一种高效的量子探测器,感知周围材料中与介电函数相关的物理性质的变化.本文列举了单层WSe2激子在探测石墨烯-氮化硼莫尔(moiré)超晶格势场引发的石墨烯二阶狄拉克点,以及WS2/WSe2莫尔超晶格中分数填充的关联绝缘态中的应用.最后,本文展望了这种无损便捷、高空间分辨率、宽适用范围的激子探测方法在其他领域的潜在应用场景.  相似文献   

5.
王仲锐  姜宇航 《物理学报》2022,(12):188-200
二维量子材料具有诸多新奇的电子态物性,又易受到外部因素的影响和调控,因此成为近年来凝聚态物理等研究领域的前沿课题之一.而当以不同的旋转角度和堆叠次序制备出二维量子材料的异质结时,莫尔超晶格的形成又进一步诱导了异质结电子能带结构的重整化,从而形成电子平带结构,再结合外加电场、磁场、应力场等外部条件,即可实现对材料整体新奇物性的设计与调控.本文主要围绕转角石墨烯及过渡金属硫族化合物异质结中的相关研究展开讨论,包括与平带物理相关的强关联效应、非常规超导现象、量子反常霍尔效应、拓扑相以及电子晶体等行为,并对未来的研究发展进行了展望.  相似文献   

6.
为研究磷化铟高电子迁移率晶体管(InP HEMT)外延结构材料的抗电子辐照加固设计的效果,本文采用气态源分子束外延法制备了系列InP HEMT外延结构材料.针对不同外延结构材料开展了1.5 MeV电子束辐照试验,在辐照注量为2×1015 cm-2条件下,并测试了InP HEMT外延结构材料二维电子气辐照前后的电学特性,获得了辐照前后不同外延结构InP HEMT材料二维电子气归一化浓度和电子迁移率随外延参数的变化规律,分析了InP HEMT二维电子气辐射损伤与Si-δ掺杂浓度、InGaAs沟道厚度和沟道In组分以及隔离层厚度等结构参数的关系.结果表明:Si-δ掺杂浓度越大,隔离层厚度较薄,InGaAs沟道厚度较大,沟道In组分低的InP HEMT外延结构二维电子气辐射损伤相对较低,具有更强的抗电子辐照能力.经分析原因如下:1)电子束与材料晶格发生能量传递,破坏晶格完整性,且在沟道异质界面引入辐射诱导缺陷,增加复合中心密度,散射增强导致二维电子气迁移率和浓度降低;2)高浓度Si-δ掺杂和薄隔离层有利于提高量子阱二维电子气浓度,降低二维电子气受辐射...  相似文献   

7.
原子级厚度的单层或者少层二维过渡金属硫族化合物因其独特的物理特性而被寄希望成为下一代光电子器件的重要组成部分。然而,二维材料的缺陷在很大程度上影响着材料的性质。一方面,缺陷的存在降低了材料的荧光量子效率、载流子迁移率等重要参数,影响了器件的性能。另一方面,合理地调控和利用缺陷催生了单光子源等新的应用,因此,表征、理解、处理和调控二维材料中的缺陷至关重要。本文综述了二维过渡金属硫族化合物中的缺陷以及缺陷相关的载流子动力学研究进展,旨在梳理二维材料中的缺陷及其超快动力学与材料性能之间的关系,为二维过渡金属硫族化合物材料特性和高性能光电子器件的相关研究提供支持。  相似文献   

8.
李更  郭辉  高鸿钧 《物理学报》2022,(10):32-50
由于量子受限效应,二维材料表现出很多三维材料所不具备的优异电学、光学、热学以及力学性能,为研究人员所关注.材料的优异物性离不开高质量材料的制备,超高真空环境可以减少杂质分子的污染与影响,提高二维材料的质量与性能.本文介绍基于超高真空环境的新型二维原子晶体材料的原位制备方法,包括利用分子束外延构筑新型二维材料、利用石墨烯插层构筑新型二维原子晶体材料异质结构以及利用扫描探针原位操纵构筑二维材料异质结构三大类.文章回顾利用这三类方法构筑的二维材料及其物理化学性质,比较三种方法各自的优势与局限性,对未来二维材料制备提供一定的指引.  相似文献   

9.
石墨烯(Graphene)是近几年迅速发展起来的研究热点材料之一,利用透射电子显微镜(TEM)研究Gra-phene的结构特征和原子动态过程,是Graphene研究的重要进展,文章评述了利用透射电子衍射方法对Graphene的层数、堆垛方式、取向和表面形貌等结构特征进行的研究工作,介绍了利用高分辨透射电子显微术在Graphene的表面缺陷、边缘结构及吸附原子等研究领域取得的最新结果.  相似文献   

10.
铪烯     
正国际上首次报道了基于d电子过渡金属元素的二维蜂窝状晶体材料。这种由铪元素构成的二维蜂窝状结构比石墨烯具有更强的自旋轨道耦合,为研究二维体系中新的量子现象和电子行为提供了新的平台。铪也是当今半导体科学和技术中最重要的元素之一,制备出铪的类石墨烯结构对未来电子学也极其重要。该工作发表在Nano Letters 13,4671(2013),被Nature China和Nature Nanotechnology作为研究亮点进行报道。  相似文献   

11.
Initiated by graphene, two-dimensional(2D) layered materials have attracted much attention owing to their novel layer-number-dependent physical and chemical properties. To fully utilize those properties, a fast and accurate determination of their layer number is the priority. Compared with conventional structural characterization tools, including atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, the optical characterization methods such as optical contrast, Raman spectroscopy, photoluminescence, multiphoton imaging, and hyperspectral imaging have the distinctive advantages of a high-throughput and nondestructive examination. Here, taking the most studied 2D materials like graphene, MoS_2, and black phosphorus as examples, we summarize the principles and applications of those optical characterization methods. The comparison of those methods may help us to select proper ones in a cost-effective way.  相似文献   

12.
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.  相似文献   

13.
Two-dimensional(2 D) materials are playing more and more important roles in both basic sciences and industrial applications. For 2 D materials, strain could tune the properties and enlarge applications. Since the growth of 2 D materials on substrates is often accompanied by strain, the interaction between 2 D materials and substrates is worthy of careful attention. Here we demonstrate the fabrication of strained monolayer silver arsenide(AgAs) on Ag(111) by molecular beam epitaxy, which shows one-dimensional stripe structures arising from uniaxial strain.The atomic geometric structure and electronic band structure are investigated by low energy electron diffraction,scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy and first-principle calculations. Monolayer AgAs synthesized on Ag(111) provides a platform to study the physical properties of strained 2 D materials.  相似文献   

14.
Molybdenum Disulfide (MoS2) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS2 has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding mechanical strength and dangling-bond free basal surface. Moreover, MoS2 has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS2 crystals introduced by various single atom dopants coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS2 are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as scanning probe microscopy (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS2 structure by isolated dopants.  相似文献   

15.
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.  相似文献   

16.
Epitaxial graphene, grown by thermal decomposition of the SiC (0001) surface, is a promising material for future applications due to its unique and superlative electronic properties. However, the innate chemical passivity of graphene presents challenges for integration with other materials for device applications. Here, we present structural characterization of epitaxial graphene functionalized by the organic semiconductor perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). A combination of ultra-high vacuum scanning tunneling microscopy (STM) and high-resolution X-ray reflectivity (XRR) is used to extract lateral and vertical structures of 0, 1, and 2 monolayer (ML) PTCDA on epitaxial graphene. Both Fienup-based phase-retrieval algorithms and model-based least-squares analyses of the XRR data are used to extract an electron density profile that is interpreted in terms of a stacking sequence of molecular layers with specific interlayer spacings. Features in the STM and XRR analysis indicate long-range molecular ordering and weak π–π* interactions binding PTCDA molecules to the graphene surface. The high degree of both lateral and vertical ordering of the self-assembled film demonstrates PTCDA functionalization as a viable route for templating graphene for the growth and deposition of additional materials required for next-generation electronics and sensors.  相似文献   

17.
The attractive mechanical and electronic properties of freestanding graphene has led to the exploration of two‐dimensional (2D) materials which can be integrated with contemporary electronics. As a 2D analog of graphene, stanene has become a hopeful candidate for 2D films due to its excellent quantum effects, superconductivity, and thermoelectric properties. Focusing on the promising 2D elemental material stanene, the fundamental electronic properties and experimental preparation of this material are reviewed. The prospects of utilizing the ability to manipulate the electronic properties of stanene for nanoelectronic and optoelectronic applications are determined.  相似文献   

18.
与微米机械振子相比, 纳米机械振子使用纳米级材料制备, 尺寸更小, 质量更轻, 它作为探测器, 在探测力、质量等物理量时拥有更高的灵敏度. 石墨烯有高强度、 低密度等优良的机械特性, 被认为是制备纳米机械振子的理想材料. 基于其制备的石墨烯纳米机械振子有着高谐振频率、高品质因子和谐振频率可调性高等优势, 对于纳米力学的基础研究和应用都具有重要的意义. 本文利用微纳加工工艺(包括电子束曝光、 电子束蒸发镀膜、 反应离子刻蚀和微米级定点干法转移技术)制备了串联石墨烯纳米机械振子样品, 并在极低温下(10 mK) 测量了石墨烯机械振子的机械性质, 实现两个串联石墨烯纳米机械振子的强耦合, 耦合强度为1.34 MHz, 协同系数C = 399.  相似文献   

19.
《Current Applied Physics》2019,19(11):1172-1176
The ability to control the tribological and electrical properties of graphene is critical to the fabrication of micro- and nanoelectromechanical systems (MEMS/NEMS) devices. Due to its high energy, electron beam irradiation has been widely used to adjust the local electrical properties of the graphene, such as inducing local defects or n-type doping. However, whether electron beam irradiation can affect the local tribological properties of wrinkled graphene has not been investigated yet. In this research, we demonstrated that the lateral force signal and the work function of the wrinkled monolayer graphene were affected by the electron beam irradiation.By using Kelvin-probe force microscopy (KPFM) and Raman spectroscopy, we measured the local electrical properties of the wrinkled monolayer graphene and confirmed that the electron-beam exposed area was changed as n-doped graphene. We compared the lateral force signal with surface potential data and concluded that the n-type doping induced by electron beam affected the tribological characteristics. Characterization of the electron-beam exposed wrinkled graphene provides a physical insight that the electrical and tribological characteristics of wrinkled graphene are correlated.  相似文献   

20.
Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The methods studied include: baking, cooling, plasma cleaning, beam showering and UV/ozone exposure. Of the methods tested, beam showering is rapid, experimentally convenient and very effective on a wide range of specimens. Oxidative plasma cleaning is also very effective and can be applied to specimens on carbon support films, albeit with some care. For electron beam-sensitive materials, cooling may be the method of choice. In most cases, preliminary removal of the bulk of the contamination by methods such as baking or plasma cleaning, followed by beam showering, where necessary, can result in a contamination-free specimen suitable for extended atomic scale imaging and analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号