首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nature of the NOx species produced during the adsorption of NO at room temperature and during its coadsorption with oxygen on LaMnAl11O19 sample with magnetoplumbite structure obtained by a sol-gel process has been investigated by means of in situ FT-IR spectroscopy. The adsorption of NO leads to formation of anionic nitrosyls and/or cis-hyponitrite ions and reveals the presence of coordinatively unsaturated Mn3+ ions. Upon NO/O2 adsorption at room temperature various nitro-nitrato structures are observed. The nitro-nitrato species produced with the participation of electrophilic oxygen species decompose at 350 °C directly to N2 and O2. No NO decomposition is observed in absence of molecular oxygen. The adsorbed nitro-nitrato species are inert towards the interaction with methane and block the active sites (Mn3+ ions) for its oxidation. Noticeable oxidation of the methane on the NOx-precovered sample is observed at temperatures higher than 350 °C due to the liberation of the active sites as a result of decomposition of the surface nitro-nitrato species. Mechanism explaining the promoting effect of the molecular oxygen in the NO decomposition is proposed.  相似文献   

2.
The adsorption of NOx(x = 1, 2, 3) molecules on single-walled carbon nanotubes (SWCNTs) is investigated using first-principle calculations. Single NO, NO2 and NO3 molecules are found to physisorb on SWCNTs, but molecules can be chemisorbed in pairs on the top of carbon atoms at close sites of SWCNTs. The adsorption energy for pairs of NO or NO3 molecules is larger than for pairs of NO2 molecules. The local curvature is found to have a sizable effect on adsorption energies. The possibility of a surface reaction NO2 + NO2 → NO + NO3 is examined and the relative pathway and barrier is calculated. The results are discussed with reference to available experimental results.  相似文献   

3.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

4.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium.  相似文献   

5.
胡明  王巍丹  曾晶  秦玉香 《中国物理 B》2011,20(10):102101-102101
Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for W5c. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen O1c site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.  相似文献   

6.
The coadsorption of NO and other small gases (H2 and CO) on a polycrystalline Rh filament has been studied by thermal desorption mass spectroscopy, using 15NO. The sample was exposed to a mixture of nitric oxide and other gases with various concentrations of 15NO at room temperature. It is indicated that NO, CO and H2 coadsorbs on the rhodium surface, and NO desorbs as N2 and O2. NO is adsorbed mainly in the dissociation at lower coverage and molecular adsorption becomes dominant at higher coverage. But the amount of desorbed O2 was very small. The chemisorption of CO is affected by the chemisorbed NO. Thermal desorption of hydrogen is detected when the value of P15NO/PCO is very small. The hydrogen adsorbed on the rhodium surface is replaced by NO with a longer exposure time.  相似文献   

7.
Density functional theory computations have been carried out on the adsorption of NO, NO2, pyridine and pyrrole on the α-Mo2C(0 0 0 1) surface for understanding the hydrodenitrogenation processes. On the Mo-terminated surface, NO decomposes into surface N and O, and NO2 dissociates into surface O and NO without any barriers, while the most stable adsorption modes of pyridine and pyrrole have π-face coordination over the three-fold molybdenum hollow sites with strongly destroyed aromatic systems. On the C-terminated surface, adsorbed surface species have been found for NO and NO2, while destroyed ring systems are found for pyridine and pyrrole. It is found that adsorption on the Mo-terminated surface is much stronger than that on the C-terminated surface.  相似文献   

8.
Mieko Sato 《Surface science》1980,95(1):269-285
Nitric oxide adsorption on tungsten and nitric dioxide adsorption on tungsten have been investigated by the FEM method. When NO or NO2 adsorbs gradually on W at 300 K and at 80 K, the FEM patterns which appear at first are found to be similar to those which appear in N2 adsorption on W. In the case of NO adsorption on W at 80 K, with further exposure, no further change of the FEM patterns is observed. However, in the cases of NO adsorption on W at 300 K, NO2 adsorption on W at 300 K, and NO2 adsorption on W at 80 K, further changes of the FEM patterns are observed with further exposure, and the FEM pattern which is obtained at the saturated state is found to be similar to the FEM pattern which appears at the saturated state of O2 adsorption on W. From the above results it is suggested that NO and NO2 dissociate on W at 300 and at 80 K.  相似文献   

9.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

10.
The effects of NO and NO2 produced by using a plasma jet (PJ) of a N2/O2 mixture on ignition of hydrogen, methane, and ethylene in a supersonic airflow were experimentally and numerically investigated. Numerical analysis of ignition delay time showed that the addition of a small amount of NO or NO2 drastically reduced ignition delay times of hydrogen and hydrocarbon fuels at a relatively low initial temperature. In particular, NO and NO2 were more effective than O radicals for ignition of a CH4/air mixture at 1200 K or lower. These ignition enhancement effects were examined by including the low temperature chemistry. Ignition tests by a N2/O2 PJ in a supersonic flow (M = 1.7) for using hydrogen, methane, and ethylene injected downstream of the PJ were conducted. The results showed that the ignitability of the N2/O2 PJ is affected by the composition of the feedstock and that pure O2 is not the optimum condition for downstream fuel injection. This result of ignition tests with downstream fuel injection demonstrated a significant difference in ignition characteristics of the PJ from the ignition tests with upstream fuel injection.  相似文献   

11.
The electron spectra resulting from thermal collisions of He* (predominantly 23S) metastable atoms with the seven triatomic molecules, CO2, COS, CS2, N2O H2S, SO2 and NO2, are compared with their respective 584-Å photoelectron spectra using a transmission-corrected electron spectrometer. The normalised relative electronic-state transition probabilities for production of ionic states in Penning ionization and photoionization are reported together with energy shifts (ΔE values) for He*(23S) Penning ionization. The cross-section for Penning ionization to lower states of NO2+ is extremely low as has been observed in other open shell molecules such as NO and O2.  相似文献   

12.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

13.
Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H2, C2H2, C2H4, C2H6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101̄1)¦, ReS |6(0001)(167̄1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe?O = 127 kcal/mole.  相似文献   

14.
BaO oxide is the main storage component of the NOx storage and reduction catalysts. Herein, the interactions between the NO2 molecule and the unsupported as well as γ-Al2O3 supported BaO clusters have been studied using the first principle density functional theory calculation. Our results indicated that there is a strong synergetic effect involving both the BaO clusters and the surface of the γ-Al2O3 substrate toward NO2 adsorption. The interfacial region between the monodispersed BaO cluster and the substrate surface that allows NO2 to bond with the cluster and the surface simultaneously was shown to be optimal for NO2 adsorption.  相似文献   

15.
Adsorption of NH3 and NO2 molecules on the external surface of C48B6N6 heterofullerene is investigated using DFT method. Attachment of NH3 and NO2 on C48B6N6 heterofullerenes are compared with the bare C48B6N6 model optimized at the B3LYP/6-31G? level. The high surface binding energies indicates that ammonia undergoes chemical adsorption and could be compatible with the long recovery time but C48B6N6 should be good NO2 sensors with quick response as well as short recovery time. Total (TDOS) and partial (PDOS) density of state calculations is also considered to elucidate the difference in the NH3 and NO2 gas detection mechanism of C48B6N6. The overlap population density of state (OPDOS) indicated that the chemical adsorption is due to the overlap of atomic orbitals below the Fermi level. The calculated results suggest that the C48B6N6 heterofullerene is a suitable sensor material for NO2 and is an ideal material for elimination and filtering of ammonia.  相似文献   

16.
Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N2 adsorption at −196 °C and XPS, and were tested for NO oxidation to NO2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t′′ for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.  相似文献   

17.
The chemisorbed species formed by reaction of nitrogen-containing gases (NO, N2O, N2 and dry air) on some transition metals (Ni, Cu, Ti, Co and Pd) at high pressures (1–200 torr) are examined by XPS. At least four adsorption species are observed on the surface at ambient temperature. They can be assigned to ?NO3 (407.3 eV), ?NO2 (404.5 eV), ?NO (400.0 eV) and the nitrogen bound directly to metal, which shows a characteristic energy value for each metal. This feature differs from the reported results of low pressure adsorption experiments. Relative abundances among the chemisorbed species vary with individual metals and gases.  相似文献   

18.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms.  相似文献   

19.
The chemistry of char-N release and conversion to nitrogen-containing products has been probed by studying its release and reactions with O2, CO2, and H2O. The experiments were performed in a fixed bed flow reactor at pressures of up to 1.0 MPa. The results show that the major nitrogen-containing products observed depend on the reactant gas; with O2, NO, and N2 being the major species observed. Char-N reaction with CO2 produces N2 with very high selectivity over a broad range of pressures and CO2 concentrations, and reaction with H2O gives rise to HCN, NH3, and N2. Observed distributions of nitrogen-containing products are little affected by pressure when O2 and CO2 are the reactant gases, but increasing pressures in the reaction with H2O results in the formation of increasing proportions of NH3. Formation of NH3 is also promoted by increasing concentrations of H2O in the feed gas. The results suggest that NO and HCN are primary products when O2 and H2O, respectively, are used as the reactant gases, and that the other observed products arise from interactions of these primary products with the char surface.  相似文献   

20.
本文应用基于二极管激光器的双路光腔衰荡光谱技术,分别对大气中NO3和N2O5浓度进行监测. 通过使用实验室标准样校正有效吸收腔长比RL和系统的总损耗系数?,并获得了NO3有效吸收截面. 该装置在时间分辨率为1 s时,对NO3的测量灵敏度达到1.1 pptv,N2O5被在线转换成NO3,从而被另一路光腔衰荡光谱装置探测. 利用该装置,对合肥市区冬季夜间大气中的NO3,N2O5浓度进行了实时监测. 通过对比一次大气快速清洁过程中氮氧化物、臭氧、PM2.5等组分的浓度变化,讨论了大气环境下可能影响NO3及N2O5浓度的因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号