首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.  相似文献   

2.
A new mathematical model of magnetohydrodynamic (MHD) theory has been constructed in the context of a new consideration of heat conduction with a time-fractional derivative of order 0<$α$≤1 and a time-fractional integral of order 0<$γ$≤2. This model is applied to one-dimensional problems for a thermoelectric viscoelastic fluid flow in the absence or presence of heat sources. Laplace transforms and state-space techniques [1] will be used to obtain the general solution for any set of boundary conditions. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some comparisons have been shown in figures to estimate the effects of the fractional order parameters on all the studied fields.  相似文献   

3.
By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glass-electron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.   相似文献   

4.
Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.  相似文献   

5.
Tailoring thermoelectric materials for specific designs and applications has been gaining momentum during past three decades. Initially confined to conventional (bulk) framework an entirely new scenario emerged with inclusion of low-dimensional structures in the scheme of things. The paper examines the effect of size reduction on phonon and electron properties in two-dimensional (quantum well) structures with an aim to maximize thermoelectric performance. The formulation has been applied to silicon-germanium quantum wells with well width ranging from 50–500 ? aimed at finding best alloy combination for thermoelectric applications.  相似文献   

6.
High‐performance thermoelectric materials have attracted immense interest due to the capability of directly converting thermal energy into electrical energy. The correlation and inherent complexity between the thermoelectric parameters pose serious challenges to improving the materials’ thermoelectric performance. Herein, the emerging novel theories in the field of thermoelectrics are summarized, such as the coherent phonon, nanophononic metamaterial, rattling effect, topological phonon, and topological electron. The impacts of these new concepts on thermoelectric performance are then reviewed. Finally, a number of promising thermoelectric materials such as one‐dimensional nanowires, two‐dimensional layered materials, and nanomesh structures are discussed. The advanced understanding of thermal and electrical transport properties in thermoelectric materials is presented herein, providing new opportunities for improving thermoelectric performance.  相似文献   

7.
The thermoelectric materials have been considered as a potential candidate for the new power generation technology based on their reversible heat and electricity conversion.Lead telluride(Pb Te) is regarded as an excellent mid-temperature thermoelectric material due to its suitable intrinsic thermoelectric properties.So tremendous efforts have been done to improve the thermoelectric performance of Pb Te,and figures of merit,z_T 2.0,have been reported.Main strategies for optimizing the thermoelectric performance have been focused as the main line of this review.The band engineering and phonon scattering engineering as two main effective strategies are systemically summarized here.The band engineering,like band convergence,resonant levels,and band flatting have been addressed in improving the power factor.Additionally,phonon scattering engineerings,such as atomic-scale,nano-scale,meso-scale,and multi-scale phonon scatterings have been applied to reduce the thermal conductivity.Besides,some successful synergistic effects based on band engineerings and phonon scatterings are illustrated as a simultaneous way to optimize both the power factor and thermal conductivity.Summarizing the above three main parts,we point out that the synergistic effects should be effectively exploited,and these may further boost the thermoelectric performance of Pb Te alloys and can be extended to other thermoelectric materials.  相似文献   

8.
通过近几十年的研究,人们对于块体及薄膜材料的热电性能已经有了较全面的认识,热电优值ZT的提高取得了飞速的进展,比如碲化铋相关材料、硒化亚铜相关材料、硒化锡相关材料的最大ZT值都突破了2.但是,这些体材料的热电优值距离大规模实用仍然有较大的差距.通过理论计算得知,当块体热电材料被制作成低维纳米结构材料时,比如二维纳米薄膜、一维纳米线,热电性能会得到显著的改善,具有微纳米结构材料的热电性能研究引起了科研人员的极大兴趣.当块体硅被制作成硅纳米线时,热电优值改善了将近100倍.然而,微纳米材料的热电参数测量极具挑战,因为块体材料的热电参数测量方法和测试平台已经不再适用于低维材料,需要开发出新的测量方法和测试平台用来研究低维材料的热导率、电导率和塞贝克系数.本文综述了几种用于精确测量微纳米材料热电参数的微机电结构,包括双悬空岛、单悬空岛、悬空四探针结构,详细介绍了每一种微机电结构的制备方法、测量原理以及对微纳米材料热电性能测试表征的实例.  相似文献   

9.
拓扑材料是凝聚态物理近些年的一个重要研究领域. 在对拓扑材料的研究中, 利用较强的磁场可以观测到高度局域电子态中出现的新奇量子态与物理效应. 热电效应是指受热材料中的载流子随着温度梯度由高温区往低温区移动时, 所产生的电荷堆积的一种现象. 热电效应是探究强磁场下拓扑材料反常物性的一种非常有效的手段. 然而关于拓扑材料热电效应在强磁场下的研究较少, 这主要是因为水冷磁体上缺乏热电效应的相关表征手段.本文针对水冷磁体在工作时机械振动很强且变场速率快的特点, 改进了传统的热电测量装置, 实现了在水冷磁体中32 T 磁场下高精度的热电测量. 通过对拓扑材料 ZrTe5 和 ZrSiSe 的热电效应进行测量, 验证了该装置的有效性.  相似文献   

10.
Naseeb Dar  H B Lal 《Pramana》1978,11(6):705-715
Measurements relating to molar magnetic susceptibility, dc electrical conductivity and thermoelectric power of Nd, Sm, Eu and Gd are reported. The ac electrical conductivity at a few temperature ranges is also given. It is found that it follows the Curie-Weiss law behaviour and this has been attributed to the crystal field effect. The experimental value of Bohr magneton for the magnetic ions has been found to be in good agreement with theory. Thermoelectric power is negative in the measured temperature range suggesting these materials to bep-type semi-conductors and holes as the dominant charge carriers. The results are explained using band theory.  相似文献   

11.
Thermoelectric generators, capable of directly converting heat into electricity, hold great promise for tackling the ever-increasing energy sustainability issue. The thermoelectric energy conversion efficiency is heavily dependent upon the materials’ performance that is quantified by the dimensionless figure-of-merit (ZT). Therefore, the central issue in the research of thermoelectric materials lies in continuously boosting the ZT value. Although thermoelectric effects were discovered in the nineteenth century, it was only until the 1950s when classic materials like Bi2Te3 and PbTe were developed and basic science of thermoelectrics was established. However, the research of thermoelectrics did not take a smooth path but a rather tortuous one with ups and downs. After hiatus in the 1970s and 1980s, relentless efforts starting from the 1990s were devoted to understanding the transport and coupling of electrons and phonons, identifying strategies for improving the thermoelectric performance of existing materials, and discovering new promising compounds. Rewardingly, substantial improvements in materials’ performance have been achieved that broke the ZT limit of unity. Meanwhile, advancements in fundamental understanding related to thermoelectrics have also been made. In this Review, recent advances in the research of thermoelectric materials are overviewed. Herein, strategies for improving and decoupling the individual thermoelectric parameters are first reviewed, together with a discussion on open questions and distinctly different opinions. Recent advancements on a number of good thermoelectric materials are highlighted and several newly discovered promising compounds are discussed. Existing challenges in the research of thermoelectric materials are outlined and an outlook for the future thermoelectrics research is presented. The paper concludes with a discussion of topics in other fields but related to thermoelectricity.  相似文献   

12.
In order to study the thermoelectric properties of TiO2-based hybrid materials, TiO2/polyparaphenylene(PPP)nanocomposites are fabricated by spark plasma sintering(SPS). The results show that the electrical conductivity follow percolation theory is enhanced due to the electron transfer highway provided by the conducting PPP phase. Furthermore,the thermal conductivity is reduced due to the drastic difference of vibrational spectra between organic and inorganic components. As a result, the greatest ZT= 0.24 is obtained for Ti O2/0.75 wt% PPP sample, which is 15-fold higher than pure Ti O2(ZT= 0.016).  相似文献   

13.
A theory of mixed electronic-impurity phase separation in degenerate magnetic oxide semiconductors, including high-T c superconductors and materials with colossal magnetoresistance (CMR), is developed. Such a separation can occur in materials with excess oxygen, if they are simultaneously doped with an acceptor impurity whose atoms are frozen in position. Oxgyen acts as an acceptor, which can diffuse through the crystal. Then, for example, manganites can break up into ferromagnetic and antiferromagnetic regions with all holes and oxygen ions concentrated in the former and with no holes or oxygen ions in the latter. Such two-phase systems can possess CMR and anomalous thermoelectric power, and they can make a transition from an insulating into a highly conducting state as temperature increases. The reverse insulator-metal transition is also possible. Fiz. Tverd. Tela (St. Petersburg) 40, 2069–2073 (November 1998)  相似文献   

14.
Pb-based group-IV chalcogenides including Pb Te and Pb Se have been extensively studied as high performance thermoelectric materials during the past few decades.However,the toxicity of Pb inhibits their applications in vast fields due to the serious harm to the environment.Recently the Pb-free group-IV chalcogenides have become an extensive research subject as promising thermoelectric materials because of their unique thermal and electronic transport properties as well as the enviromentally friendly advantage.This paper briefly summarizes the recent research advances in Sn-,Ge-,and Sichalcogenides thermoelectrics,showing the unexceptionally high thermoelectric performance in Sn Se single crystal,and the significant improvement in thermoelectric performance for those polycrystalline materials by successfully modulating the electronic and thermal transport through using some well-developed strategies including band engineering,nanostructuring and defect engineering.In addition,some important issues for future device applications,including N-type doping and mechanical and chemical stabilities of the new thermoelectrics,are also discussed.  相似文献   

15.
《Comptes Rendus Physique》2016,17(10):1072-1083
Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal–phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims at contributing to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.  相似文献   

16.
徐真  李慧  陈立东 《中国物理 B》2022,31(2):28203-028203
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.  相似文献   

17.
热电材料可以实现热能和电能的相互转换,它是一种环境友好的功能性材料.当前,热电材料的热电转换效率低,这严重制约了热电器件的大规模应用,因此寻找更加优异热电性能的新材料或提高传统热电材料的热电性能成为热电研究的主题.与块状材料相比,薄膜具有二维的宏观性质和一维的纳米结构特性,方便研究材料的物理机制与性能的关系,还适用于制备可穿戴电子设备.本文总结了Cu2Se薄膜5种不同的制备方法,包括电化学沉积、热蒸发、旋涂、溅射以及脉冲激光沉积.另外,结合典型事例,总结了薄膜的表征手段,并从Cu2Se的电导率、塞贝克系数和热导率等参数出发,讨论了各个参数对热电性能的影响机制.最后介绍了Cu2Se薄膜热电的热门应用方向.  相似文献   

18.
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far,extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 m W·m-1·K-2at room temperature and remains non-saturated up to 400 K.Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.  相似文献   

19.
沈婉慧子  邹代峰  聂国政  许英 《中国物理 B》2017,26(11):117202-117202
The effects of biaxial strain on the electronic structure and thermoelectric properties of monolayer WSe_2 have been investigated by using first-principles calculations and the semi-classical Boltzmann transport theory. The electronic band gap decreases under strain, and the band structure near the Fermi level of monolayer WSe_2 is modified by the applied biaxial strain. Furthermore, the doping dependence of the thermoelectric properties of n-and p-doped monolayer WSe_2 under biaxial strain is estimated. The obtained results show that the power factor of n-doped monolayer WSe_2 can be increased by compressive strain while that of p-doping can be increased with tensile strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these two-dimensional transition metal dichalcogenides materials.  相似文献   

20.
黄平  游理  梁星  张继业  骆军 《物理学报》2019,68(7):77201-077201
层状氧硫族化合物由于其本征的低晶格热导率和可观的热电性能吸引了广泛关注,其中以BiCuSeO化合物的热电性能最为优异.但是,其同晶型化合物BiCuTeO,由于带隙较小且存在大量本征Cu空位,导致载流子浓度较高,热电性能较差,从而研究较少.针对BiCuTeO存在的上述问题,本文利用Se替代部分Te,以期能够展宽带隙并减少Cu空位,提高其热电性能.采用固相反应结合快速热压烧结制备了BiCuTe_(1-x)Se_xO(x=0, 0.1, 0.2, 0.3和0.4)块体热电材料,并系统地研究了该体系的电热输运性能.研究结果表明,利用Se替代Te,可以使BiCuTeO导电层化学键强度增加、带隙增大、载流子有效质量增加以及载流子散射增强,从而导致载流子浓度和迁移率同时降低,进而电导率随着Se含量增加而剧烈降低, Seebeck系数则显著增大.由于综合电输运性能恶化,功率因子随着Se含量增加而减小,导致热电优值zT随着Se含量增加而降低.最终,Se含量为x=0.1的样品,在室温和723 K时的zT值分别达到约0.3和0.7,仍然在较宽温区内保持较高的zT值.由于Se替代Te改变了BiCuTeO的能带结构,通过载流子浓度优化,有望进一步提高其热电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号