首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Laser irradiation of tungsten and gold nanoparticles in aqueous solutions of Th(NO3)4 was experimentally studied. Picosecond Nd:YAG lasers with a wavelength of 1.06 μm and a peak power from 1011 to 1013 W cm−2 were used. The composition of colloidal solutions before and after laser irradiation was analyzed using atomic absorption and gamma spectrometry. It was found that laser irradiation initiates nuclear reactions involving thorium nuclei, occurring via two different channels. Radioactive decay of thorium nuclei within its radioactive series is enhanced under laser irradiation in D2O; one of the fission fragments is 137Cs. Possible mechanisms of the process are discussed.  相似文献   

2.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

3.
In this work, we report on laser ablation of thermally grown SiO2 layers from silicon wafer substrates, employing an 8–9 ps laser, at 1064 (IR), 532 (VIS) and 355 nm (UV) wavelengths. High-intensity short-pulse laser radiation allows direct absorption in materials with bandgaps higher than the photon energy. However, our experiments show that in the intensity range of our laser pulses (peak intensities of <2×1012 W/cm2) the removal of the SiO2 layer from silicon wafers does not occur by direct absorption in the SiO2 layer. Instead, we find that the layer is removed by a “lift off” mechanism, actuated by the melting and vaporisation of the absorbing silicon substrate. Furthermore, we find that exceeding the Si melting threshold is not sufficient to remove the SiO2 layer. A second threshold exists for breaking of the layer caused by sufficient vapour pressure. For SiO2 layer ablation, we determine layer thickness dependent minimum fluences of 0.7–1.2 J/cm2 for IR, 0.1–0.35 J/cm2 for VIS and 0.2–0.4 J/cm2 for UV wavelength. After correcting the fluences by the reflected laser power, we show that, in contrast to the melting threshold, the threshold for breaking the layer depends on the SiO2 thickness.  相似文献   

4.
Diacetylene monomer containing p-nitrophenyl azobenzene moiety (NADA) was synthesized. Silver nanoparticles with different concentrations were adulterated in the above polymerized NADA (PNADA) films and the third-order nonlinear optical properties were investigated in detail. UV–vis spectra and transmission electron microscopy were used to confirm the formation of PNADA/Ag nanocomposite films. The silver nanoparticles (average size of 10 nm) were well dispersed in the polymer films. The value of the nonlinear refractive index n 2 for PNADA films (8.48×10−15 cm2/W) was much higher than that of pure polydiacetylene films. Further, the introduction of silver nanoparticles into the PNADA polymer films led to the further enhancement of nonlinear optical properties. The maximum value of n 2 for PNADA/Ag nanocomposite films could be 11.6×10−15 cm2/W. This enhancement should be ascribed to the surface plasmon resonance of silver nanoparticles.  相似文献   

5.
Features of light pulse propagation and nonlinear optical transformation of the spectrum generated by titanium-sapphire laser pulses (τ0.5 = 27 fs, λ0 = 790 nm) have been studied experimentally in a 50-cm cylindrical hollow waveguide (microcapillary with 280-μm diameter core) filled with gaseous molecular nitrogen and helium. Stable guided propagation of light pulses with an intensity of ~1.5⋅1014 W/cm2 in the fundamental EH11 mode of the gas-filled capillary has been demonstrated. Exact focusing of the laser light made it possible to obtain rather high relative (≥95%) and absolute (~60%) energy transmission efficiencies for the pulses at gas pressures equal to or lower than 760 Torr. A method to determine the nonlinear phase shift of the pulses has been proposed. Values of the nonlinear refractive index n2 ≈ 4.5⋅10–23 cm2/(W⋅Torr) (N2) and n2 ≈ 2.8⋅10–23 cm2/(W⋅Torr) (He) have been found. A short-wavelength shift in addition to the Kerr nonlinearity has been shown to be contributed by the generated electron plasma at high pulse intensities (≥1014 W/cm2).  相似文献   

6.
A tunable diode laser absorption spectroscopy (TDLAS) technique and appropriate instrumentation was developed for the measurement of temperature and water vapor concentrations in heated gases. The technique is based on the detection of the spectra of H2O absorption lines with different energies of low levels. The following absorption lines of H2O were used: 7189.344 cm−1 (E″=142 cm−1), 7189.541 cm−1 (E″=1255 cm−1), 7189.715 cm−1 (E″=2005 cm−1). Spectra were recorded using fast frequency scanning of a single distributed feedback (DFB) laser. A unique differential scheme for the recording of the absorption spectra was developed. An optimal technique for fitting the experimental spectra was developed.  相似文献   

7.
Femtosecond-laser spectroscopy is used to study the photoionization and photofragmentation of large neutral silicon clusters in a beam. Silicon clusters Sin with sizes up to n≈6000, corresponding to nanoparticles with diameters up to 6 nm, are generated in a laser vaporization source. Nanosecond- and femtosecond-laser ionization are employed to characterize the free silicon nanoparticles. Excitation with intense femtosecond-laser pulses leads to prompt formation of doubly and triply charged Sin clusters. Additionally, strong fragmentation of charged clusters occurs by Coulomb explosion, resulting in high released kinetic energies. Multiply charged atoms up to Si4+ with initial kinetic energies in the range of 500 eV are observed for laser intensities of about 1013 W/cm2. Pump–probe spectroscopy yields decay times of the intermediate resonances of the nanoparticles. Received: 22 January 2000 / Published online: 7 August 2000  相似文献   

8.
Laser-induced breakdown spectroscopy (LIBS) in germane (GeH4), initially at room temperature and pressures ranging from 2 to 10 kPa, was studied using a high-power transverse excitation atmospheric (TEA) CO2 laser (λ=10.653 μm, τ FWHM=64 ns and power densities ranging from 0.28 to 5.52 GW cm−2). The strong emission spectrum of the generated plasma is mainly due to electronic relaxation of excited Ge, H and ionic fragments Ge+, Ge2+ and Ge3+. The weak emission is due to molecular bands of H2. Excitation temperatures of 8100±300 K and 23,500±2500 K were estimated by Ge atomic and Ge+ singly ionized lines, respectively. Electron number densities of the order of (0.7–6.2)×1017 cm−3 were deduced from the Stark broadening of several atomic Ge lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the germane pressure and laser irradiance. Optical breakdown threshold intensities in germane at 10.653 μm have been determined. The mechanism of initiation of the laser-induced plasma in germane has been analyzed.  相似文献   

9.
High resolution diode laser spectroscopy has been applied to the detection of hydrogen sulphide at ppm levels utilizing different transitions within the region of the ν 1+ν 2+ν 3 and 2ν 1+ν 2 combination bands around 1.58 μm. Suitable lines in this spectral region have been identified, and absolute absorption cross sections have been determined through single-pass absorption spectroscopy and confirmed in the Doppler linewidth regime using cavity enhanced absorption spectroscopy (CEAS). The desire for a sensitive system potentially applicable to H2S sensing at atmospheric pressure has led to an investigation on suitable transitions using wavelength modulation spectroscopy (WMS). The set-up sensitivity has been calculated as 1.73×10−8 cm−1 s1/2, and probing the strongest line at 1576.29 nm a minimum detectable concentration of 700 ppb under atmospheric conditions has been achieved. Furthermore, pressure broadening coefficients for a variety of buffer gasses have been measured and correlated to the intermolecular potentials governing the collision process; the H2S–H2S dimer well depth is estimated to be 7.06±0.09 kJ mol−1.  相似文献   

10.
A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.  相似文献   

11.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

12.
The spectral structure of the wing of the Rayleigh line in ice, ordinary water (H2O), and heavy water (D2O) is recorded in the frequency range 0–50 cm−1 by means of four-photon polarization spectroscopy. It is shown that this structure can be explained by the collective rotational motion of molecules in cells determined by the structure of hexagonal ice. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 1, 12–14 (10 January 1999)  相似文献   

13.
We have demonstrated the production of ∼1.9 μm near-infrared radiation by using difference frequency generation within a 5% MgO doped PPLN crystal by coupling ∼735 nm radiation from a tunable external cavity diode laser with relatively high powered 532 nm radiation from both Nd:YVO3 and Nd:YAG lasers. The radiation produced is of low power, ∼15 μW, and was used in conjunction with the sensitivity enhancing techniques of wavelength modulation spectroscopy (WMS) and cavity enhanced absorption spectroscopy (CEAS). Experiments were carried out on rotationally resolved transitions in the combination bands of NH3 and CO2 in the 1.9 μm region. An α min  value of 3.6×10−6 cm−1 Hz−1/2 was achieved for WMS measurements on CO2. A comparable α min  value of 2.2×10−6 cm−1 Hz−1/2 was achieved for NH3 using CEAS. The low NIR power indicates that despite the level of MgO doping quoted for the crystal, under prolonged exposure photorefractive damage has occurred.  相似文献   

14.
The AucoreAgshell (Au@Ag) nanoparticles in size of 30 nm were prepared using 10 nm gold nanoparticles as seeds at 90°C, and were purified by high-speed centrifugation to remove the excess trisodium citrate to obtain Au@Ag nanoprobe. In the medium of pH 4.0 acetate buffer solution—7.2 μmol/L H2O2–67 μmol/L Fe(II), Au@Ag nanoparticles exhibited a resonance scattering (RS) peak at 538 nm. Upon addition of Catalase (Ct), the system produced hydroxyl radical that oxidized the Au@Ag nanoprobe to form the AuAg nanoparticles with partly bare nanogold. Those AuAg nanoparticles aggregated to large nanoclusters that led to the RS peak wavelength red-shift and its RS peak intensity enhanced. The catalase activity (C) is linear to the enhanced RS intensity (ΔI) in the range of 6 to 2,800 U/L, with regression equation of ΔI = 0.168 C-0.2, the correlation coefficient of 0.9952, and detection limit of 2.8 U/L. This method was applied to the detection of serum samples, and the results were agreement with that of the spectrophotometry. A new catalytic mechanism of catalase was proposed with oxywater principle that was agreement with the results of resonance scattering spectroscopy, absorption spectrophotometry, transmission electron microscopy and laser scattering.  相似文献   

15.
In the 9387–9450 cm–1 region at temperatures of 300–1000 K, we have used an intracavity laser spectrometer based on a neodymium laser with threshold sensitivity to absorption 10–8 cm–1 and spectral resolution 0.035 cm–1 to study the absorption spectrum of D216O, H216O, and HD16O vapor. The high-temperature spectrum contains more than 450 absorption lines, 240 of which are assigned to the HDO isotopomer. The absorption lines of HDO were identified and belong to nine vibrational transitions: 3ν23, 2ν1 + 3ν2, 2ν1 + ν3, 4ν2 + ν3, 7ν2, ν1 + 2ν2 + ν3, ν1 + 5ν2, ν1 + 2ν2, and 3ν3 – ν2.  相似文献   

16.
A fast-response (100 kHz) tunable diode laser absorption sensor is developed for measurements of temperature and H2O concentration in shock tubes, e.g. for studies of combustion chemistry. Gas temperature is determined from the ratio of fixed-wavelength laser absorption of two H2O transitions near 7185.60 cm-1 and 7154.35 cm-1, which are selected using design rules for the target temperature range of 1000–2000 K and pressure range of 1–2 atm. Wavelength modulation spectroscopy is employed with second-harmonic detection (WMS-2f) to improve the sensor sensitivity and accuracy. Normalization of the second-harmonic signal by the first-harmonic signal is used to remove the need for calibration and minimize interference from emission, scattering, beam steering, and window fouling. The laser modulation depth for each H2O transition is optimized to maximize the WMS-2f signal for the target test conditions. The WMS-2f sensor is first validated in mixtures of H2O and Ar in a heated cell for the temperature range of 500–1200 K (P=1 atm), yielding an accuracy of 1.9% for temperature and 1.4% for H2O concentration measurements. Shock wave tests with non-reactive H2O–Ar mixtures are then conducted to demonstrate the sensor accuracy (1.5% for temperature and 1.4% for H2O concentration) and response time at higher temperatures (1200–1700 K, P=1.3–1.6 atm). PACS 42.62.Fi; 42.55.Px; 42.60.Fc; 07.35.+k  相似文献   

17.
A microplasma is generated in the microhole (400 μm diameter) of a molybdenum-alumina-molybdenum sandwich (MHCD type) at medium pressure (30–200 Torr) in pure argon. Imaging and emission spectroscopy have been used to study the sheath and electron density dynamics during the stationary normal regime and the self-pulsing regime. Firstly, the evolution of the microdischarge structure is studied by recording the emission intensity of the Ar (5p[3/2]1–4s[3/2]1)_{1}) line at 427.217 nm, and Ar+ (4p′ 2P3/2–4s′ 2D5/2)_{5/2}) line at 427.752 nm. The maximum of the Ar+ line is located in the vicinity of the sheath-plasma edge. In both regimes, the experimental observations are consistent with the position of the sheath edge calculated with an ionizing sheath model. Secondly, the electron density is recorded by monitoring the Stark broadening of the Hb_\beta-line. In the self-pulsing regime at 150 Torr, the electron density reaches its maximum value of 4 × 1015 cm-3, a few tens of ns later than the discharge current maximum. The electron density then decays with a characteristic decay time of about 2 μs, while the discharge current vanishes twice faster. The electron density in the steady-state regime is two orders of magnitude lower, at about 6–8 × 1013 cm-3.  相似文献   

18.
We investigated spatiotemporal evolution of expanding ablation plume of aluminum created by a 100-fs, 1014–1015-W/cm2 laser pulse. For diagnosing dynamic behavior of ablation plume, we employed the spatiotemporally resolved X-ray absorption spectroscopy (XAS) system that consists of a femtosecond-laser-plasma soft X-ray source and a Kirkpatrick–Baez (K–B) microscope. We successfully assigned the ejected particles by analyzing structure of absorption spectra near the L II,III absorption edge of Al, and we clarified the spatial distribution of Al+ ions, Al atoms, and liquid droplets of Al in the plume. We found that the ejected particles strongly depend the irradiated laser intensity. The spatial distribution of atomic density and the expansion velocity of each type of particle were estimated from the spatiotemporal evolution of ablation particles. We also investigated a temperature of the aluminum fine particles in liquid phase during the plume expansion by analyzing the slope of the L II,III absorption edge in case of 1014-W/cm2 laser irradiation where the nanoparticles are most efficiently produced. The result suggests that the ejected particles travel in a vacuum as a liquid phase with a temperature of about 2500 to 4200 K in the early stage of plume expansion.  相似文献   

19.
Chemiluminescence (CL) of the reaction system tetracycline–H2O2–Fe(II)/(III)–Eu(III) was used for the determination of tetracycline hydrochloride in water, pharmaceutical preparations, and honey. The CL spectrum registered for this system shows emission bands typical of Eu(III) ions, with a maximum at λ ∼ 600 nm, corresponding to the electronic transitions of 5D07F1 and 5D07F2. A strong chemiluminescence intensity characteristic of europium(III) ions in the system tetracycline–H2O2–Fe(II)/(III)–Eu(III), as contrasted to the emission of the system tetracycline–H2O2–Fe(II)/(III) without Eu(III), proves that the Eu(III) ion plays the role of a chemiluminescence sensitizer, accompanying tetracycline oxidation in the Fenton system (H2O2–Fe(II)/(III)). A linear dependence was observed for the integrated CL light intensity on the tetracycline concentration in the range of 2 × 10−7 to 3 × 10−5 mol l−1 with the detection limit of 5 × 10−8 mol l−1 in aqueous solution.  相似文献   

20.
The velocities of energy transport in an undercritical plasma of polymer aerogel with and without copper nanoparticles were measured. Transmission of the laser light through targets of different thicknesses such as submicron three-dimensional polymer networks with densities below the critical value (0.13–0.52 N cr) for a wavelength of 0.438 μm and intensity of (3–7)·1014 W/cm2 at a half-height pulse duration of 0.32 ns was studied. The transfer of a heating laser radiation was registered on the rear side of the target. It ranged from a level of ∼0.5% for the thickness of a low-density layer of 400 μm and density of 9 mg/cm3 (mass per unit square of 0.36 mg/cm2) up to 50–60% for a thickness of 100 μm and density of 2.25 mg/cm3 (mass per unit square of 0.02 mg/cm2). The time dependences of the optical emission from the rear side of the targets were measured. They appear to be indicative of the plasma dynamics in two-layer targets (polymer foam on Al foil) and enable the estimation of the absorption depth for the laser light in an undercritical plasma. __________ Translated from Preprint No. 8 of the P. N. Lebedev Physical Institute, Moscow (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号