首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvent-free films of poly (ethylene oxide)–silver triflate (PEO–AgCF3SO3)/MgO-based nanocomposite polymer electrolytes (PEO)50AgCF3SO3x wt.% MgO (x = 1, 3, 5, 7, and 10) obtained using solution casting technique were found to exhibit an appreciably good complexation of MgO nanofiller within the polymer electrolyte system and non-Debye type of relaxation as revealed by Fourier transform infrared and complex impedance analyses. Optimized filler (5 wt.% MgO) when incorporated into the polymer electrolyte resulted in a maximum electrical conductivity of 2 × 10−6 S cm−1 in conjunction with a silver ionic transference number (t Ag+) of 0.23 at room temperature (298 K). Detailed structural, thermal, and surface morphological investigation indicated a slight reduction in the degree of crystallinity owing to the addition of MgO nanofiller.  相似文献   

2.
The solid polymer electrolyte films based on polyethylene oxide, NaClO4 with dodecyl amine modified montmorillonite as filler, and polyethylene glycol as plasticizer were prepared by a tape casting method. The effect of plasticization on structural, microstructural, and electrical properties of the materials has been investigated. A systematic change in the structural and microstructural properties of plasticized polymer nanocomposite electrolytes (PPNCEs) on addition of plasticizer was observed in our X-ray diffraction pattern and scanning electron microscopy micrographs. Complex impedance analysis technique was used to calculate the electrical properties of the nanocomposites. Addition of plasticizer has resulted in the lowering of the glass transition temperature, effective dissociation of the salt, and enhancement in the electrical conductivity. The maximum value of conductivity obtained was ∼4.4 × 10−6 S cm−1 (on addition of ∼20% plasticizer), which is an order of magnitude higher than that of pure polymer nanocomposite electrolyte films (2.82 × 10−7 S cm−1). The enhancement in conductivity on plasticization was well correlated with the change in other physical properties.  相似文献   

3.
A novel azobenzene-containing fluorinated polyimide was synthesized. The nonlinear optical property and photoinduced birefringence of a polyimide thin film were investigated. Large third-order nonlinear refraction (n 2=−4.49×10−11 cm2/W) was observed in the polyimide thin film by carrying out Z-scan measurement. The polyimide thin film exhibited larger nonlinear refraction than that of a mono-azo dye doped PMMA thin film (n 2=−1.63×10−12 cm2/W). The photoinduced birefringence of the polyimide thin film ( n∼10−2) under different pump intensities was investigated; it was much larger than that of the mono-azo dye doped PMMA thin film ( n∼10−3). Moreover, the time constants for birefringence growth and relaxation processes were determined.  相似文献   

4.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

5.
Noble metal-coated PDA composite vesicles were expected to increase the effective third-order nonlinear optical susceptibility χ (3)(ω), due to the enhancement of the optical electric field induced by localized surface plasmon resonance. Different size (20, 50 and 80 nm) Ag colloidal nanoparticles were coated on the outer surface of polydiacetylene (PDA) vesicles to form PDA/Ag nanocomposite vesicles and the size-dependent effect of Ag colloidal nanoparticles on NLO properties enhancement has been explored. The explanation based on the competition of a size-dependent light-confinement effect and a size-dependent dielectric constant of Ag particles had been presented. Furthermore, these PDA/Ag composite vesicles were successfully immobilized onto the solid substrate by the Langmuir–Blodgett (LB) method and their linear and nonlinear optical properties were characterized, respectively. Obviously, PDA/Ag composite vesicles Langmuir–Blodgett (LB) films promoted the enhancement of the third-order NLO properties.  相似文献   

6.
In order to investigate the effect of pulse width and solvent on the nonlinear properties of metal nanostructures, silver nanowires were fabricated in a direct current electric field (DCEF) using a solid-state ionic method and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nonlinear refractive index (γ) of silver nanowires suspended in ethanol was measured using the Z-scan technique and laser radiation of various (femto-, pico-, and nanosecond) pulse durations. Experimental results indicated that silver nanowires have obvious positive refractive nonlinearities and γ (the Kerr-induced self-focusing) increases as the pulse duration increases from 7.4×10−8 cm2/GW at 110 fs to 1.6×10−4 cm2/GW at 8 ns, due to the additional influence of the atomic reorientational Kerr effect in the case of longer pulses. Due to the solvent dependence of the nonlinear behavior of the silver nanowires, the nonlinear absorption and refraction of silver nanowires suspended in de-ionized water are smaller than those of silver samples suspended in ethanol. The thermal nonlinearities are insignificant in our experimental conditions.  相似文献   

7.
Single beam z-scan measurements have been made on films containing amorphous polycarbonate and the zwitterionic chromophore, PYR-3, that has a very high second order nonlinear optical (NLO) figure of merit. The third order NLO figure of merit is ≈1.6 at 1030 nm and is comparable to that found in organic compounds optimized for high n 2 values. The two-photon absorption coefficient is 2.1×10−12 m/W, which is very low and advantageous for NLO device applications. The third order NLO refractive index is −1.4×10−18 m2/W.  相似文献   

8.
S. Ramesh  G. P. Ang 《Ionics》2010,16(5):465-473
Plasticized polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as the host polymer and lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SO2)2 as a salt were prepared by solution casting technique at different ratios. The ionic conductivity varied slightly and exhibited a maximum value of 3.65 × 10−5 S cm−1 at 85% PMMA and 15% LiN(CF3SO2)2. The complexation effect of salt was investigated using FTIR. It showed some simple overlapping and shift in peaks between PMMA and LiN(CF3SO2)2 salt in the polymer electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were added to the PMMA–LiN(CF3SO2)2 polymer electrolyte as plasticizer to enhance the conductivity. The highest conductivities obtained were 1.28 × 10−4 S cm−1 and 2.00 × 10−4 S cm−1 for EC and PC mixture system, respectively. In addition, to improve the handling of films, 1% to 5% fumed silica was added to the PMMA–LiN(CF3SO2)2–EC–PC solid polymer electrolyte which showed a maximum value at 6.11 × 10−5 S cm−1 for 2% SiO2.  相似文献   

9.
Thin solid polymer electrolytes based on polyethylene oxide (PEO) and silver triflate (AgCF3SO3) dispersed with various concentrations of aluminum oxide (Al2O3) nanoparticles have been prepared by solution casting technique. These thin polymer films are found to have thickness of the order of 30 to 100 μm. The X-ray diffraction (XRD) patterns have indicated the amorphous nature of the polymer electrolyte. The differential scanning calorimeter (DSC) traces showed slight change in the glass transition temperature (T g) whereas the degree of crystallization (X c) decreases markedly due to the addition of alumina nanoparticles. Fourier transform infrared (FTIR) spectral analysis of all these samples has revealed the presence of absorption bands around 1,000 cm−1; thus indicating the complexation of silver ions with oxygen in PEO. Employing the Wagner’s polarization technique as the standard method, the total ionic transference number for the complexed polymer electrolyte was found to be approximately unity thereby revealing that the significant contribution to electrical conduction was due to ions only. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006  相似文献   

10.
In this paper, data concerning the effect of pH on the morphology of Ag–TiO2 nanocomposite during photodeposition of Ag on TiO2 nanoparticles is reported. TiO2 nanoparticles prepared by sol–gel method were coated with Ag by photodeposition from an aqueous solution of AgNO3 at various pH levels ranging from 1 to 10 in a titania sol, under UV light. The as-prepared nanocomposite particles were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption method at liquid nitrogen temperature (−196 °C) from Brunauer–Emmett–Teller (BET) measurements. It is shown that at a Ag loading of 1.25 wt.% on TiO2, a high-surface area nanocomposite morphology corresponding to an average of one Ag nanoparticle per titania nanoparticle was achieved. The diameter of the titania crystallites/particles were in the range of 10–20 nm while the size of Ag particles attached to the larger titania particles were 3 ± 1 nm as deduced from crystallite size by XRD and particle size by TEM. Ag recovery by photo harvesting from the solution was nearly 100%. TEM micrographs revealed that Ag-coated TiO2 nanoparticles showed a sharp increase in the degree of agglomeration for nanocomposites prepared at basic pH values, with a corresponding sharp decrease in BET surface area especially at pH > 9. The BET surface area of the Ag–TiO2 nanoparticles was nearly constant at around a value of 140 m2 g−1 at all pH from 1–8 with an anomalous maximum of 164 m2 g−1 when prepared from a sol at pH of 4, and a sharp decrease to 78 m2 g−1 at pH of 10.  相似文献   

11.
A new method is proposed for synthesizing metallic nanoparticles in a polymer matrix. These nanoparticles are synthesized during thermal vacuum evaporation of a metal (4.8 × 10−6 g/cm2) onto the surface of viscousfluid epoxy resin (at a viscosity of 20–120 Pa s) having room temperature, which is well below the glass transition temperature of the polymer. As a result, epoxy resin layers containing silver nanoparticles in their volume form; these nanoparticles are studied by transmission electron microscopy and optical absorption spectroscopy. Various types of disperse structures formed by metallic nanoparticles in the polymer are detected. The morphology of the composite material is found to be controlled by the polymer viscosity and the metal deposition time.  相似文献   

12.
This paper describes the preparation and conductivity studies of polyindole–ZnO composite polymer electrolyte (CPE) with LiClO4. Polyindole–ZnO-based polymer nanocomposites were prepared by chemical method and characterized by XRD, infrared (IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The IR spectrum confirms the intermolecular interaction between polyindole and ZnO. The significant spectral changes of polyindole and ZnO nancomposites reveal the strong interaction between polyindole and ZnO nanoparticles. The structural morphologies of the ZnO, polyindole, and polyindole–ZnO are obtained from SEM. The TEM image of polyindole nanocomposite shows that ZnO is embedded in polyindole matrix. An enhanced conductivity of 4.405 × 10−7 S cm−1 at 50 °C for the CPE was determined from impedance studies.  相似文献   

13.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

14.
S. Ramesh  K. C. Wong 《Ionics》2009,15(2):249-254
Thin films of poly(methyl methacrylate) (PMMA) with lithium triflate (LiCF3SO3) were prepared by using the solution-casting method with PMMA as the host polymer. Ionic conductivity and dielectric measurements were carried out on these films. The highest conductivity for polymer electrolyte with a ratio of 65:35 was found to be 9.88 × 10−5 S cm−1, which is suitable for the production of mobile phone battery. Thermal gravimetric analysis was carried out to evaluate the thermal stability of the polymer electrolyte. The addition of salts will increase thermal stability of the polymer electrolyte.  相似文献   

15.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

16.
A method is described for the ion synthesis of silver nanoparticles in epoxy resin that is in a viscousfluid state (viscosity 30 Pa s) during irradiation. The viscous-fluid or glassy polymer is implanted by 30-keV silver ions at a current density of 4 μA/cm2 in the ion beam in the dose range 2.2 × 1016–7.5 × 1016 ions/cm2. The epoxy layers thus synthesized contain silver nanoparticles, which are studied by transmission electron microscopy and optical absorption spectroscopy. The use of the viscous-fluid state increases the diffusion coefficient of the implanted impurity, which stimulates the nucleation and growth of nanoparticles at low implantation doses and allows a high factor of filling of the polymer with the metal to be achieved.  相似文献   

17.
In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl, Br, I, SCN, CN, or S2O3 2− anions, whose adsorption features are elucidated by the formation constants for AgX2 (m−1)−, here X denotes the above anions. In particular, Cl, Br, or SCN ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN, S2O3 2−, or I anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650–700 to 500–550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.  相似文献   

18.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

19.
We present the results of studies of the nonlinear optical properties of Pd, Ru, and Au nanoparticles. We studied the nonlinear refraction and nonlinear absorption of suspensions of these nanoparticles at 1064-nm wavelength. A relatively strong nonlinear absorption of the Pd nanoparticles was observed in the case of 1064-nm, 50-ps pulses (β=2×10−9 m W−1). The Ru and Pd nanoparticles showed weak negative nonlinear refraction (γ∼−(6–8)×10−16 m2 W−1) in this spectral range. In the case of the Au nanoparticles, a saturated absorption at 532 nm dominated over other nonlinear optical processes.  相似文献   

20.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号