首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sheath and electron density dynamics in the normal and self-pulsing regime of a micro hollow cathode discharge in argon gas
Authors:C Lazzaroni  P Chabert  A Rousseau and N Sadeghi
Institution:1.Laboratoire de Physique des Plasmas, école Polytechnique, CNRS, UPMC, Université Paris Sud-11,Palaiseau,France;2.Laboratoire de Spectrométrie Physique, Univ. Joseph Fourier & CNRS,Grenoble,France
Abstract:A microplasma is generated in the microhole (400 μm diameter) of a molybdenum-alumina-molybdenum sandwich (MHCD type) at medium pressure (30–200 Torr) in pure argon. Imaging and emission spectroscopy have been used to study the sheath and electron density dynamics during the stationary normal regime and the self-pulsing regime. Firstly, the evolution of the microdischarge structure is studied by recording the emission intensity of the Ar (5p3/2]1–4s3/2]1)_{1}) line at 427.217 nm, and Ar+ (4p′ 2P3/2–4s′ 2D5/2)_{5/2}) line at 427.752 nm. The maximum of the Ar+ line is located in the vicinity of the sheath-plasma edge. In both regimes, the experimental observations are consistent with the position of the sheath edge calculated with an ionizing sheath model. Secondly, the electron density is recorded by monitoring the Stark broadening of the Hb_\beta-line. In the self-pulsing regime at 150 Torr, the electron density reaches its maximum value of 4 × 1015 cm-3, a few tens of ns later than the discharge current maximum. The electron density then decays with a characteristic decay time of about 2 μs, while the discharge current vanishes twice faster. The electron density in the steady-state regime is two orders of magnitude lower, at about 6–8 × 1013 cm-3.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号