首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Theoretical calculations of the [2,3]-sila-wittig rearrangement of isomers of [(allyloxy)silyl]lithium (C3H5O)HzSiLi have been performed in the gas phase and THF solvent using the G3MP2B3 method. Seven isomers of silylenoid (C3H5O)H2SiLi, 1-7, are found. The [2,3]-silawittig rearrangement paths are followed using two isomers, 2 and 4, to yield the transition states as well as the products. In the transition state, the silicon center functions as a nucleophile and the aUyl as an electrophile. The interaction between the silicon and allylic sites leads to the formation of SiC(3) bond and the break of O-C(1) bond. Finally, the (allylsilyl)oxylithium (C3H5)H2SiOLi is obtained. The rearrangement paths are confirmed by the intrinsic reaction coordinate (IRC) calculations. The rearrangement mechanisms of reactions of 2 and 4 are similar, and the latter reaction is more favored in the gas phase and THF solvent. Also, the solvent effects are analyzed in this work.  相似文献   

2.
Here we employ density functional theory calculations to systematically investigate the underlying mechanism of Cu(OTf)2-catalyzed [3+2] cycloaddition reactions in the synthesis of CF3-substituted pyrazolidines. About eight possible initial configurations of the [3+2] reaction is considered, and all relevant reactants, transition states, and products are optimized. Based on these structures, internal reaction coordinate paths, and wavefunction analysis results, we conclude that the Cu(OTf)2-catalyzed [3+2] cycloaddition follows a concerted asynchronous mechanism. The C N bond forms immediately after the formation of the C C bond. Among the eight reaction paths, the energy barrier for the [3+2] reaction that leads to the CF3-substituted syn-pyrazolidine is the lowest, ∼5.4 kcal/mol, which might result in the diastereoselectivity that is observed in the experiment. This work not only gives the detailed mechanism of the Cu(OTf)2-catalyzed [3+2] cycloaddition but can also be helpful for the future designation of Cu(OTf)2-based cycloaddition processes.  相似文献   

3.
The structures, energetics, and aromatic character of dicyclobuta[de,ij]naphthalene, 1, dicyclopenta[cd,gh]pentalene, 2, dihydrodicyclobuta[de,ij]naphthalene, 3, and dihydrocyclopenta[cd,gh]pentalene, 4, have been examined at the B3LYP/6-311++G//B3LYP/6-31G level of theory. All molecules are bowl-shaped, and the pentalene isomers, 2 and 4, are most stable. A comparison with other C(12)H(6) and C(12)H(8) isomers indicates that 2 is approximately 25 kcal/mol less stable than 1,5,9-tridehydro[12]annulene and 4 is approximately 100 kcal/mol higher in energy than acenaphthylene, both of which are synthetically accessible. The transition state structure for bowl-to-bowl inversion of 1 is planar (D(2)(h)()) and lies 30.9 kcal/mol higher in energy than the ground state; the transition state for inversion of 2 is C(2)(h)() and lies 46.6 kcal/mol higher in energy. Symmetry considerations, bond length alternations, and NICS values (a magnetic criterion) all indicate that the ground states of 1, 3, and 4 are very aromatic; however, HOMA values (a measure of bond delocalization) indicate that 3S and 4S are aromatic but that 1S is less so. NICS values for the ground state of 2 strongly indicate aromaticity; however, bond localization, symmetry, and HOMA values argue otherwise.  相似文献   

4.
The insertion reactions of silylenoid [(tert-butoxy)diphenylsilyl]lithium Ph(2)SiLi(OBu-t) into HF, H(2)O, and NH(3) molecules have been studied by using density functional theory at the B3LYP/6-31G(d) level. To better understand the reactivity of silylenoid Ph(2)SiLi(OBu-t), its two most stable isomers, the p-complex (1) and the three-membered ring (2), were selected for reactants. Natural bond orbital (NBO) analysis has been performed to study the effects of charge transfer and to understand the nature of different interactions between atoms or groups. The results indicate that (i) the insertion of Ph(2)SiLi(OBu-t) into X-H bond proceeds in a concerted manner via a three-membered-ring transition state to form substituted silane Ph(2)SiHX with dissociation of LiOBu-t; (ii) the activation barrier increases in the order of HF < H(2)O < NH(3), and the barrier heights of the 1 insertions are higher than those of the 2 insertions, respectively; (iii) both 1 and 2 display ambiphilic character in their insertion reactions.  相似文献   

5.
The results of quantum chemical calculations at the gradient-corrected density functional theory (DFT) level with the B3LYP functional of the donor-acceptor complexes R(3)E[bond]E'R' and their isomers R(2)E[bond]E'RR', where E, E' = B[bond]Tl and R, R' = H, Cl, or CH(3), are reported. The theoretically predicted energy differences between the donor-acceptor form R(3)E[bond]E'R' and the classical isomer R(2)E[bond]E'RR' and the bond dissociation energies of the E[bond]E' bonds are given. The results are discussed in order to show which factors stabilize the isomers R(3)E[bond]E'R'. There is no simple correlation of the nature of the group-13 elements E, E' and the substituents R, R' with the stability of the complexes. The isomers R(3)E[bond]'R' come stabilized by pi donor groups R', while the substituents R may either be sigma- or pi-bonded groups. Calculations of Cl(3)B[bond]BR' [R' = Cl, cyclopentadienyl (Cp), or Cp*] indicate that the Cp* group has a particularly strong effect on the complex form. The calculations show that the experimentally known complex Cl(3)B[bond]BCp* is the strongest bonded donor-acceptor complex of main-group elements that has been synthesized until now. The theoretically predicted B[bond]B bond energy is D(o) = 50.6 kcal/mol. However, the calculations indicate that it should also be possible to isolate donor-acceptor complexes R(3)E[bond]E'R' where R' is a sigma-bonded bulky substituent. Possible candidates that are suggested for synthetic work are the borane complexes (C(6)F(5))(3)B[bond]E'R' and (t)Bu(3)B[bond]E'R' (E' = Al[bond]Tl) and the alane complexes Cl(3)Al[bond]E'R' (E' = Ga[bond]Tl).  相似文献   

6.
Theoretical investigations are performed for the first time on the simplest hydrogenated germanium cyanide [H,Ge,C,N], whose analogs [H,C(2),N] and [H,Si,C,N] have been detected in space and laboratory, respectively. The detailed potential energy surfaces in both singlet and triplet states are constructed at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-31G(d)+ZPVE level, including 18 minimum isomers and 26 interconversion transition states. The former three low-lying and kinetically stabilized isomers are HGeCN (1)1 (0.0 kcal/mol), HGeNC (1)2 (5.1 kcal/mol), and cyclic cCHNGe(1)7 (11.1 kcal/mol). In addition, five isomers HCNGe (1)3 (33.8), HNCGe (1)5 (29.8), cNHCGe (1)8 (37.9), HGeCN (3)1 (30.1), and HNCGe (3)5 (26.5) each have considerable barriers, despite their high energies. Future laboratory characterization and astrophysical detection of the eight [H,Ge,C,N] isomers, especially the former three low-lying species (1)1, (1)2, and (1)7, are highly recommended. The accurate spectroscopic data at the QCISD/6-311G(d,p) level are provided. For some species, the CBS-QB3 calculations are also performed. Wherever possible, comparisons with the analogous [H,C(2),N] and [H,Si,C,N] are made on the structural, energetic, and bonding properties.  相似文献   

7.
DFT investigations are carried out to explore the effective catalyst forms of DBU and H2O and the mechanism for the formation of 2,3‐dihydropyrido[2,3‐d]‐pyrimidin‐4(1H)‐ones. Three main pathways are disclosed under unassisted, water‐catalyzed, DBU and water cocatalyzed conditions, which involves concerted nucleophilic addition and H‐transfer, concerted intramolecular cyclization and H‐transfer, and Dimroth rearrangement to form the product. The results indicated that the DBU and water cocatalyzed pathway is the most favored one as compared to the rest two pathways. The water donates one H to DBU and accepts H from 2‐amino‐nicotinonitrile ( 1 ), forming [DBU‐H]+‐H2O as effective catalyst form in the proton migration transition state rather than [DBU‐H]+‐OH?. The hydrogen bond between [DBU‐H]+···H2O··· 1 ? decreases the activation barrier of the rate‐determining step. Our calculated results open a new insight for the green catalyst model of DBU‐H2O. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
[60]Fullerene mixed peroxides C60(O)(OOtBu)4 exhibit chemo- and regioselective reactions under mild conditions. The epoxy moiety is opened by ferric chloride to form vicinal hydroxy chloride C60Cl(OH)(OOtBu)4. BF3 is also effective in opening the epoxy moiety. The O-O bond of the fullerene mixed peroxide is cleaved by aluminum chloride to form both [5,6]- and [6,6]-fullerene hemiketals (oxohomo[60]fullerenes). A Hock-type rearrangement is proposed for the formation of the hemiketals, in which a fullerene C-C bond is cleaved. Lewis acids and/or visible light can initiate isomerization of the hemiketal isomers. Single-crystal X-ray analysis and theoretical calculations confirmed the results.  相似文献   

9.
Biginelli reaction of thiourea, 2‐hydroxy‐1‐naphthaldehyde, and acetoacetic ester (or benzoyl acetone) under solvent‐free conditions and MW irradiation gave novel 3‐thioxo‐2,3,4,5‐tetrahydro‐1H‐1,5‐methanonaphtho[1,2‐g][1,3,5]oxadiazocine derivatives. Subsequent reaction of the obtained compounds with α‐chloroacetamide led to 5‐methyl‐5H,13H‐5,13‐methanonaphtho[1,2‐g] thiazolo[2,3‐d][1,3,5]oxadiazocin‐1(2H)‐ones, which were converted to the Z‐isomers of 2‐arylylidene‐5H,13H‐5,13‐methanonaphtho[1,2‐g]thiazolo[2,3‐d][1,3,5]oxadiazocin‐1(2H)‐one derivatives by reaction with arylaldehydes. The structures of the products were characterized by 1H NMR, 13C NMR spectra, and X‐ray analysis.  相似文献   

10.
2-[(Dialkylcarbamoyl)methylene]-2,3-dihydrobenzo[1,4]dioxine and 3-[(dialkylcarbamoyl)methylene]-3,4-dihydro-2H-benzo[1,4]oxazine derivatives (3 and 5, respectively) were synthesized for the first time starting from readily available 2-prop-2-ynyloxyphenols 1 and 2-prop-2-ynyloxyanilines 4, respectively, through tandem oxidative aminocarbonylation of the triple bond-intramolecular conjugate addition. Reactions were carried out in the presence of catalytic amounts of PdI2 in conjunction with an excess of KI in N,N-dimethylacetamide (DMA) as the solvent at 80-100 degrees C and under 20 atm (at 25 degrees C) of a 4:1 mixture of CO-air. The reaction showed a significant degree of stereoselectivity, the Z isomers being formed preferentially or exclusively. The configuration around the double bond of the major stereoisomers was unequivocally established by X-ray diffraction analysis.  相似文献   

11.
金国新  刘宇  于晓燕 《有机化学》2000,20(2):202-205
以半夹心结构铑的化合物Cp*Rh(CN^tBu)Cl2(1)(Cp*=η^5-C5Me5)与Fe(C5H4ELi)2.2THF反应,合成出异双核二茂铁化合物Cp*Rh(CN^tBu)(EC5H4)2Fe[E=S(2),Se(3),Te(4)]。通过AgBF4氧化2和3得到二茂铁离子型化合物[Cp*Rh(CN^tBu)(EC5H4)2Fe]BF4[E=S(5),Se(6)]。采用元素分析、红外光谱、^1H和13CNMR谱以及EI-MS表征了所合成的化合物。  相似文献   

12.
The alkylation of 3-cyano-4-methoxymethyl-6-methyl-2(1H)-pyridone by active halomethylene compounds has been studied. It was shown that the reaction of the pyridone with methyl- and ethylchloroacetates and phenacyl and p-bromophenacyl bromides occurs to give N- and O-structural isomers. Only the N-derivatives are separated from the reaction mixture when the pyridone is alkylated with iodoacetamide. It was found that 2-aroylmethyl-3-cyano-4-methoxymethyl-6-methylpyridines cyclize in the presence of KOH to 3-amino-2-aroyl-4-methoxymethyl-6-methylfuro[2,3-b]pyridines. The molecular structure of 3-amino-2-benzoyl-4-methoxymethyl-6-methylfuro[2,3-b]pyridine has been studied using an X-ray analytical method.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1670–1682, November, 2004.  相似文献   

13.
The crystal structure of the new title compound 2-ethoxy-3-n-butyl- benzofuro[2,3d]pyrimidin-4(3H)-one (C16H18N2O3, Mr = 286.32) has been prepared and determined by singlecrystal X-ray diffraction. The crystal is of monoclinic, space group P21/c with a = 13.7167(14), b = 13.113(1), c = 8.378(1) A, β = 98.992(2)^o, V = 1488.4(3) A^3, Z = 4, Dc = 1.278, F(000) = 608, μ = 0.089 mm^-1, MoKa radiation (2 = 0.71073), R = 0.0498, wR = 0.1238 for 2336 observed reflections with I 〉 2σ(I). X-ray diffraction analysis reveals that all ring atoms in the benzo[4, 5]furo [2,3-d] pyrimi- dinone moieties are almost coplanar.  相似文献   

14.
The synthesis and structure of a Zn-Zn-bonded compound supported by a doubly reduced alpha-diimine ligand, [Na(THF)2]2 x [LZn-ZnL] (L = [(2,6-(i)Pr2C6H3)N(Me)C]2(2-)) are reported, with a Zn-Zn bond length of 2.399(1) angstroms.  相似文献   

15.
Rh(III)-catalyzed C−H bond annulation of 2-arylquinoxalines with cyclic 2-diazo-1,3-diketones has been accomplished for the first time to synthesize a novel series of 2,3-dihydrodibenzo[a,c]phenazin-4(1H)-one frameworks by means of carbene insertion followed by condensation. The reaction proceeds through the C−H bond activation and functionalization of 2-arylquinoxalines using Rh(III)/AgSbF6 complex to produce highly substituted 2,3-dihydrodibenzo[a,c]phenazin-4(1H)-one and benzo[5,6][1,2,4]thiadiazino[2,3-f]phenanthridin-5(6H)-one-10,10-dioxide derivatives in good to excellent yields.  相似文献   

16.
Six Ru2(6+) derivatives of the form Ru2(L)4(C[triple bond]CC6H5)(2), where L = 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, or 2,4,6-F(3)ap, are synthesized and characterized as to their electrochemical, spectroscopic, and/or structural properties. These compounds are synthesized from a reaction between LiC[triple bond]CC6H5 and Ru2(L)4Cl. Two of the investigated complexes exist in a (4,0) isomeric form while four adopt a (3,1) geometric conformation. These two series of geometric isomers are compared with previously characterized (4,0) Ru2(ap)4(C[triple bond]CC6H5)(2), (4,0) Ru2(F5ap)4(C[triple bond]CC6H5)(2), and (3,1) Ru2(F5ap)4(C[triple bond]CC6H5)(2). The overall data on the nine compounds thus provide an opportunity to systematically examine how the electrochemical and structural properties of these Ru2(6+) complexes vary with respect to isomer type and electronic properties of the bridging ligands.  相似文献   

17.
The neopentyl and the pinacol rearrangements as examples of Wagner-Meerwein rearrangements were investigated by the use of DFT calculations. As the first reaction, a model of neopentyl chloride (1b) and (H2O)12 was employed. In the reaction, the patterns of C--Cl scission, methyl migration, and C--OH formation were analyzed. The calculations have shown that the 2-methyl-2-butanol (6) is formed in two steps with the transient intermediate, neopentyl alcohol (3). The first step is the nucleophilic substitution reaction and is the rate-determining one. The second step is the dual migration of methyl and OH2 groups. The primary and tertiary carbocations were calculated to be absent in the neopentyl rearrangement starting from the hydrolysis. As the second reaction, the pinacol rearrangement of two substrates 2,3-dimethyl-2,3-butanediol (7) and 2,3-diphenyl-2,3-butanediol (12) was investigated. Acidic aqueous solvent was modeled by H3O+ and 12H2O. The reaction paths were promoted by a hydrogen-bond circuit of H3O+(H2O)2 and were determined as completely concerted processes. Protonated species and carbocations as intermediates also do not intervene during the pinacol rearrangement. Active functions of proton relays along the hydrogen bonds in the two rearrangements were demonstrated.  相似文献   

18.
The bicyclo[2.2.2]oct-2-ene radical cation (1(.+)) exhibits matrix ESR spectra that have two very different types of gamma-exo hydrogens (those hydrogens formally in a W-plan with the alkene pi bond), a(2H) about 16.9 G and a(2H) about 1.9 G, instead of the four equivalent hydrogens as would be the case in an untwisted C(2v) structure. Moreover, deuterium substitution showed that the vinyl ESR splitting is not resolved (and under about 3.5 G); this is also a result of the twist. Enantiomerization of the C(2) structures is rapid on the ESR timescale above 110 K (barrier estimated at 2.0 kcalmol(-1)). Density functional theory calculations estimate the twist angle at the double bond to be 11-12 degrees and the barrier as 1.2-2.0 kcalmol(-1). Single-configuration restricted Hartree-Fock (RHF) calculations at all levels that were tried give untwisted C(2v) structures for 1(.+), while RHF calculations that include configuration interactions (CI) demonstrate that this system undergoes twisting because of a pseudo Jahn-Teller effect (PJTE). Significantly, twisting does not occur until the sigma-orbital of the predicted symmetry is included in the CI active space. UHF calculations at all levels that include electron correlation (even semiempirical) predict twisting at the alkene pi bond because they allow the filled alpha and the beta hole of the SOMO to have different geometries. The 2,3-dimethylbicyclo[2.2.2]oct-2-ene radical cation (2(.+)) is twisted significantly less than 1(.+), but has a similar temperature for maximum line broadening. Neither the 2,3-dioxabicyclo[2.2.2]octane radical cation (3(.+)) nor its 2,3-dimethyl-2,3-diaza analogue (5(.+)) shows any evidence of twisting. Calculations show that the orbital energy gap between the SOMO and PJTE-active orbitals for 3(.+) is too large for significant PJTE stabilization to occur.  相似文献   

19.
The mechanism of the unimolecular isomerisation reaction of the silicon and germanium analogues of bicyclo[1.1.0]butane with various kinds of substituents (X4R6; X?=?Si and Ge, R=H, CH3, t-Bu and SiH3) to the corresponding cyclobutene analogues has been investigated by ab initio molecular orbital and DFT methods. Several reaction mechanisms were considered. They are roughly divided into two types; (1) skeletal rearrangement and (2) substituent migration. It was found that substituents (R) have the leading effect on the reaction mechanism but the partial or full replacement of the skeletal silicon atoms by germanium atoms has some important effects as well. Furthermore, the character of the bridge bond of the long-bond and short-bond isomers of these bicyclic compounds was investigated and discussed in comparison with the ?? bond in ethene and disilene by the CiLC analysis.  相似文献   

20.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号