首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

2.
Fluorescence intensity and its ratio mapping combined with time-dependent optical microscopy and atomic force microscopy (AFM) were used to understand morphology evolution of local aggregates and neighboring regions for organic solar cells. Three solvents with different boiling points including chlorobenzene (CB), 1,3-dichlorobenzene (1,3-DCB) and 1,2-dichlorobenzene (1,2-DCB) were used to engineer morphology. These solvents affected morphology evolution factors such as solvent evaporation rate, formation (e.g., growth rate, size and/or quantity) of (6,6)-phenyl-C61-butric-acid methyl ester (PCBM)-rich aggregates, and packing/ordering of poly(3-hexylthiophene) (P3HT). Three local regions (1, 2 and 3) including microscale aggregates and their surrounding areas were identified to explore the mechanism of morphology evolution. Region 1 was the PCBM-rich aggregates; region 2 was the PCBM-deficient area; and region 3 was the area composed of a relatively normal P3HT/PCBM composite beyond region 2 for each solvent. The intensity of fluorescence spectra decreased as region 1 > region 2 > region 3 in thermally annealed (140 °C, 20 min) P3HT/PCBM blend film from each solvent. The highest fluorescence intensity in region 1 was probably caused by the relatively poor phase separation where both PCBM and P3HT formed large isolated domains. The higher fluorescence intensity ratio (720 nm/650 nm) suggested a larger relative amount of PCBM molecules, supported by similar morphologies in fluorescence intensity ratio mapping compared to those in optical images. The fluorescence intensity ratio was with the order of region 1 > region 3 > region 2 in both CB and 1,3-DCB based films, but with region 1 > region 2 > region 3 for the 1,2-DCB based film. The order of effective area taken up by aggregates was CB > 1,3-DCB > 1,2-DCB in annealed (140 °C, 10 min) bulk blend films. The final solar cell performance agreed with morphology results. This work is imperative with regards to revealing the mechanism of morphology evolution in local aggregates and surrounding regions for organic photovoltaic films.  相似文献   

3.
Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies.  相似文献   

4.
We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough to be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of behaviors observed and the wide range of control over polymer morphology achieved at a variety of different length scales have important implications for the development of bulk heterojunction solar cells.  相似文献   

5.
We have developed an improved small-angle X-ray scattering (SAXS) model and analysis methodology to quantitatively evaluate the nanostructures of a blend system. This method has been applied to resolve the various structures of self-organized poly(3-hexylthiophene)/C61-butyric acid methyl ester (P3HT/PCBM) thin active layer in a solar cell from the studies of both grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction (GIXRD). Tuning the various length scales of PCBM-related structures by a different annealing process can provide a flexible approach and better understanding to enhance the power conversion of the P3HT/PCBM solar cell. The quantitative structural characterization by this method includes (1) the mean size, volume fraction, and size distribution of aggregated PCBM clusters, (2) the specific interface area between PCBM and P3HT, (3) the local cluster agglomeration, and (4) the correlation length of the PCBM molecular network within the P3HT phase. The above terms are correlated well with the device performance. The various structural evolutions and transformations (growth and dissolution) between PCBM and P3HT with the variation of annealing history are demonstrated here. This work established a useful SAXS approach to present insight into the modeling of the morphology of P3HT/PCBM film. In situ GISAXS measurements were also conducted to provide informative details of thermal behavior and temporal evolution of PCBM-related structures during phase separation. The results of this investigation significantly extend the current knowledge of the relationship of bulk heterojunction morphology to device performance.  相似文献   

6.
The nature of main in-plane skeleton Raman modes (C=C and C-C stretch) of poly(3-hexylthiophene) (P3HT) in pristine and its blend thin films with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is studied by resonant and nonresonant Raman spectroscopy and Raman simulations. Under resonant conditions, the ordered phase of P3HT with respect to its disordered phase is identified by (a) a large shift in the C=C mode peak position to lower wavenumber (~21 cm(-1) shift), (b) a narrower fwhm of the C=C mode (~9 cm(-1) narrower), (c) a larger intensity of the C-C mode relative to the C=C mode (~56% larger), and (d) a very small Raman dispersion (~5 cm(-1)) of the C=C mode. The behavior of the C=C and C-C modes of the ordered and disordered phases of P3HT can be explained in terms of different molecular conformations. The C=C mode of P3HT in P3HT:PCBM blend films can be reproduced by simple superposition of the two peaks observed in different phases of P3HT (ordered and disordered). We quantify the molecular order of P3HT after blending with PCBM and the subsequent thermal annealing to be 42 ± 5% and 94 ± 5% in terms of the fraction of ordered P3HT phase, respectively. The increased molecular order of P3HT in blends upon annealing correlates well with enhanced device performance (J(SC), -4.79 to -8.72 mA/cm(2) and PCE, 1.07% to 3.39%). We demonstrate that Raman spectroscopy (particularly under resonant conditions) is a simple and powerful technique to study molecular order of conjugated polymers and their blend films.  相似文献   

7.
The effect of replacing [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) by its multiadduct analogs (bis‐PCBM and tris‐PCBM) in bulk heterojunction organic solar cells with poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) is studied in terms of blend film microstructure, photophysics, electron transport properties, and device performance. Although the power conversion efficiency of the blend with bis‐PCBM is similar to the blend with PCBM, the performance of the devices with tris‐PCBM is considerably lower as a result of small photocurrent. Despite the lower electron affinity of the fullerene multiadducts, μs‐ms transient absorption measurements show that the charge generation efficiency is similar for all three fullerenes. The annealed blend films with multiadducts show a lower degree of fullerene aggregation and lower P3HT crystallinity than the annealed blend films with PCBM. We conclude that the reduction in performance is due largely to poorer electron transport in the blend films from higher adducts, due to the poorer fullerene network formation as well as the slower electron transport within the fullerene phase, confirmed here by field effect transistor measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
韩艳春 《高分子科学》2013,31(7):1029-1037
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (m PCBM/m P3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.  相似文献   

9.
The charge recombination rate in poly(3-hexyl thiophene)/TiO(2) nanorod solar cells is demonstrated to correlate to the morphology of the bulk heterojunction (BHJ) and the interfacial properties between poly(3-hexyl thiophene) (P3HT) and TiO(2). The recombination resistance is obtained in P3HT/TiO(2) nanorod devices by impedance spectroscopy. Surface morphology and phase separation of the bulk heterojunction are characterized by atomic force microscopy (AFM). The surface charge of bulk heterojunction is investigated by Kelvin probe force microscopy (KPFM). Lower charge recombination rate and lifetime have been observed for the charge carriers in appropriate heterostructures of hybrid P3HT/TiO(2) nanorod processed via high boiling point solvent and made of high molecular weight P3HT. Additionally, through surface modification on TiO(2) nan,orod, decreased recombination rate and longer charge carrier lifetime are obtained owing to creation of a barrier between the donor phases (P3HT) and the acceptor phases (TiO(2)). The effect of the film morphology of hybrid and interfacial properties on charge carrier recombination finally leads to different outcome of photovoltaic I-V characteristics. The BHJ fabricated from dye-modified TiO(2) blended with P3HT exhibits 2.6 times increase in power conversion efficiency due to the decrease of recombination rate by almost 2 orders of magnitude as compared with the BHJ made with unmodified TiO(2). In addition, the interface heterostructure, charge lifetime, and device efficiency of P3HT/TiO(2) nanorod solar cells are correlated.  相似文献   

10.
Conjugated copolymer derivatives of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT) containing 10% of alkyne functionalities in the side chains have been prepared using the sulfinyl precursor route and the Rieke method, respectively. With the aim of expanding the absorption range of these conjugated polymers for their use in bulk heterojunction (BHJ) polymer:fullerene solar cells, appropriate phthalocyanine (Pc) molecules have been covalently bound through a post-polymerization "click chemistry" reaction between the alkyne functionalities in the side chains of the copolymers and a Pc functionalized with an azide moiety. The resulting poly(p-phenylenevinylene)-Pc (PPV-Pc) material holds a 9 mol% content of Pcs, while the polythiophene-Pc material (PT-Pc) contains a 8 mol% of Pc-functionalization in the side chains. As expected, the presence of the Pc contributes to the extension of the absorption up to 700 nm. BHJ solar cells have been prepared using PPV-Pc and PT-Pc materials in combination with PCBM. Although the Pc absorption contributes to the generation of photocurrent, the overall power conversion efficiencies (PCE) obtained from these cells are lower than those obtained with BHJ P3HT:PCBM (1:1) and MDMO-PPV:PCBM (1:4) solar cells. A plausible explanation could be the moderate solubility of the PPV-Pc and PT-Pc materials that limits the processing into thin films.  相似文献   

11.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

12.
Spin‐coating a mixture solution of P3HT and PCBM on a cold substrate largely enhanced the power conversion efficiency (PCE) of the bulk heterojunction (BHJ) solar cells. This concept was based on the abrupt decrease in the solubility of P3HT as solution temperature decreased. The selective precipitation of P3HT on the PEDOT:PSS‐coated cold substrate facilitated a desirable rich composition of P3HT at the interface with the PEDOT:PSS layer. The high crystallinity of P3HT suppressed the movement of PCBM during thermal annealing, preventing aggregation of PCBM. The morphological excellence of the pristine film gave a comparable PCE to that made by the conventional fabrication process. After thermal annealing, the device made via coating on a cold substrate showed above 30% increase in PCE from the BHJ solar cells made by the conventional method.

  相似文献   


13.
We present photovoltaic devices based on a blend of the conjugated polymer poly(3-hexylthiophene) (P3HT) with cadmium selenide nanorods, where the solvent for film deposition has been carefully chosen to optimize the film morphology. Using 1,2,4-trichlorobenzene (TCB), which has a high boiling point, as solvent for P3HT it is possible to obtain a fibrilar morphology, providing extended pathways for hole transport. Blend devices fabricated using this solvent gave solar power conversion efficiencies of 2.6%. This indicates that efficient transport of electrons and holes is achieved in these films, allowing them to operate effectively at solar illumination intensities.  相似文献   

14.
The characteristic absorption spectra of three kinds of phases, the isolated, ordered, and disordered phases, in a solvent‐vapor annealed poly(3‐hexylthiophene)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT/PCBM) blend film were studied by means of spectroelectrochemistry (SEC) and time‐resolved absorption spectroscopy (TAS). The results reveal that the content of three phases are 12 % isolated, 37 % ordered, and 51 % disordered for the annealed P3HT neat film, and 25 % isolated, 31 % ordered, and 44 % disordered for the annealed P3HT/PCBM blend film. The vertical distribution of the different phases in the blend film was studied by SEC, and the results show that the ordered and isolated phases are mainly distributed in the top and in the bottom of the annealed films, respectively, while the disordered phase is mainly distributed in the middle and the bottom of the films.  相似文献   

15.
A key challenge to the development of polymer‐based organic solar cells is the issue of long‐term stability, which is mainly caused by the unstable time‐dependent morphology of active layers. In this study, poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl C60‐butyric acid methyl ester (PCBM) blend is used as a model system to demonstrate that the long‐term stability of power conversion efficiency can be significantly improved by the addition of a small amount of amorphous regiorandom P3HT into semicrystalline regioregular one. The optical properties measured by UV–vis absorption and photoluminescence reveal that regiorandom P3HT can intimately mix with PCBM and prevent the segregation of PCBM. In addition, X‐ray scattering techniques were adopted to evidence the retardation of phase separation between P3HT and PCBM when regiorandom P3HT is added, which is further confirmed by optical microscopy that shows a reduction of large PCBM crystals after annealing at high temperature in the presence of regiorandom P3HT. The improvement of the long‐term stability is attributed to the capability of amorphous P3HT to be thermodynamically miscible with PCBM, which allows the active layer to form a more stable structure that evolves slower and hence decelerates the device decay. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 975–985  相似文献   

16.
The effect of solvent blending on the performance of an anthracene‐containing poly(p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) backbone‐based donor polymer with asymmetrically substituted branched 2‐ethylhexyloxy and methyloxy side‐chains in bulk heterojunction solar cells is reported. This copolymer yields relatively high open‐circuit voltages with fullerene‐based electron acceptors. We systematically studied the thin‐film blend morphology and solar cell performance as a function of solvent composition (chlorobenzene to chloroform ratio) and polymer to [6,6]‐phenyl C61‐butyric acid methylester (PCBM) ratio. We combined photophysical investigations with atomic force microscopy and grazing incidence wide‐angle X‐ray scattering to elucidate the solid‐state morphology in thin films. In the investigated polymer system, the blend morphology becomes independent of the supporting solvent for high PCBM concentrations. Deposition from solvent blends rather than from pure chlorobenzene facilitates the beneficial phase separation between polymer and PCBM, leading to improved charge transport properties (short‐circuit currents) at lower PCBM concentrations. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 868–874  相似文献   

17.
The optimization and control of the nanomorphology of thin films used as active layer in bulk heterojunction (BHJ) plastic solar cells is of key importance for a better understanding of the photovoltaic mechanisms and for increasing the device performances. Hereto, solid‐state NMR relaxation experiments have been evaluated to describe the film morphology of one of the “work‐horse” systems poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene‐vinylene)/[6, 6]‐phenyl‐C61butyric acid methyl ester (MDMO‐PPV/PCBM) in a quantitative way. Attention is focused on the influence of the processing solvent (toluene vs. chlorobenzene), the blend composition, and the casting technique, that is, spin coating versus doctor blading. It is demonstrated that independently of the solvent and casting technique, part of the PCBM becomes phase separated from the mixed phase. Whereas casting from toluene results in the development of well‐defined PCBM crystallites, casting from chlorobenzene leads to the formation of PCBM‐rich domains that contain substructures of weakly organized PCBM nanoclusters. The amount and physico‐chemical state of the phase separated PCBM is quantified by solid‐state NMR relaxation times experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The nanostructure of thermally annealed thin films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends on hydrophobic and hydrophilic substrates was studied to unravel the relationship between the substrate properties and the phase structure of polymer blends in confined geometry. Indeed, the nature of the employed substrates was found to affect the extent of phase separation, the PCBM aggregation state and the texture of the whole system. In particular, annealing below the melting temperature of the polymer yielded the formation of PCBM nanometric crystallites on the hydrophobic substrates, while mostly amorphous microscopic aggregates were formed on the hydrophilic ones. Moreover, while an enhanced in-plane orientation of P3HT lamellae was promoted on hydrophobic substrates, a markedly tilted geometry was produced on the hydrophilic ones. The observed effects were interpreted in terms of a simple model connecting the interface free energy for the blend films to the different polymer chain mobility and diffusion velocity of PCBM molecules on the different substrates.  相似文献   

19.
We report herein a comparison of the photophysics of a series of polythiophenes with ionization potentials ranging from 4.8 to 5.6 eV as pristine films and when blended with 5 wt % 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61 (PCBM). Three polymers are observed to give amorphous films, attributed to a nonplanar geometry of their backbone while the other five polymers, including poly(3-hexylthiophene), give more crystalline films. Optical excitation of the pristine films of the amorphous polymers is observed by transient absorption spectroscopy to give rise to polymer triplet formation. For the more crystalline pristine polymers, no triplet formation is observed, but rather a short-lived (approximately 100 ns), broad photoinduced absorption feature assigned to polymer polarons. For all polymers, the addition of 5 wt % PCBM resulted in 70-90% quenching of polymer photoluminescence (PL), indicative of efficient quenching of polythiophene excitons. Remarkably, despite this efficient exciton quenching, the yield of dissociated polymer+ and PCBM- polarons, assayed by the appearance of a long-lived, power-law decay phase assigned to bimolecular recombination of these polarons, was observed to vary by over 2 orders of magnitude depending upon the polymer employed. In addition to this power-law decay phase, the blend films exhibited short-lived decays assigned, for the amorphous polymers, to neutral triplet states generated by geminate recombination of bound radical pairs and, for the more crystalline polymers, to the direct observation of the geminate recombination of these bound radical pairs to ground. These observations are discussed in terms of a two-step kinetic model for charge generation in polythiophene/PCBM blend films analogous to that reported to explain the observation of exciplex-like emission in poly(p-phenylenevinylene)-based blend films. Remarkably, we find an excellent correlation between the free energy difference for charge separation (deltaG(CS)rel) and yield of the long-lived charge generation, with efficient charge generation requiring a much larger deltaG(CS)rel than that required to achieve efficient PL quenching. We suggest that this observation is consistent with a model where the excess thermal energy of the initially formed polaron pairs is necessary to overcome their Coulombic binding energy. This observation has important implications for synthetic strategies to optimize organic solar cell performance, as it implies that, at least devices based on polythiophene/PCBM blend films, a large deltaG(CS)rel (or LUMO level offset) is required to achieve efficient charge dissociation.  相似文献   

20.
The synthesis and characterization of two low band gap copolymers ( P1 and P2 ) incorporating benzo[1,2‐b:4,5‐b']dithiophene unit substituted with octylsulfanylthienyl groups (OSBT) are here reported. These materials, designed to be employed in polymer solar cells (PSCs), were obtained from alternating OSBT and bithiophene ( P1 ) or thienothiophene ( P2 ) units. Their structural electrochemical and photophysical properties were investigated. They are thermally stable and soluble in organic solvents from which they easily form films. They also form π‐stacks in solution, in film and display a moderate solvatochromism. These polymers were tested with [70]PCBM in bulk‐heterojunction (BHJ) PSCs where they act as donor materials and [70]PCBM is the electron acceptor. The best device, obtained using a 1:3 weight ratio for the P1 :[70]PCBM blend, shows a PCE around 1.5%. A broad response from 350 to 700 nm is also observed in the external quantum efficiency (EQE) curves, wider for P1 with respect to P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1603–1614  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号