首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
A new polymeric dyad of oligo‐anthracene‐block‐poly(3‐hexylthiophene) (Oligo‐ANT‐b‐P3HT) has been synthesized as a donor–donor dyad building block for organic photovoltaics. The polymer dyad and oligomer of anthracene‐9,10‐diyl (Oligo‐ANT) are prepared by Grignard Metathesis. The higher order of crystallinity and molecular chains ordering at solid phase reveal the intrinsic optical and electrical properties of polymeric dyad resulting in relatively higher light harvesting ability compared to the oligo(anthracene‐9,10‐diyl). The UV‐visible spectrum of (Oligo‐ANT‐b‐P3HT) in solution shows broad absorption with two sets of absorption from both anthracene and thiophene core units, covering a wide range of the visible spectrum. The test devices of the blends of polymeric dyad with fullerene C61 (PCBM) show improved photovoltaic performance with a power conversion efficiency of 3.26% upon subjecting to pre‐fabrication thermal treatments. With optimized morphology of the interpenetrating network and the shorter fluorescence lifetime of the annealed dyad/PCBM blends, the effective charge transfer from the donor dyad to PCBM has evidenced. Thus, these studies will allow further synthetic advances to make potential high crystalline polymeric dyads with significantly improved light harvesting capability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3032–3045  相似文献   

3.
We present a dual length morphological model for the active layer of bulk‐heterojunction, polymer‐based solar cells using results from neutron and X‐ray scattering techniques. Two critical characteristic lengths are found in the mixtures composed of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). A characteristic length at 15 nm is the local characteristic of the P3HT crystals and PCBM agglomerations, which is independent of the bulk composition upon relaxation by thermal annealing. Conversely, a larger bicontinuous structure described by Teubner–Strey model with phase distances between 23 and 35 nm forms only after thermal annealing, which is highly correlated to the bulk compositions. These results suggest phase separation between the polymer and fullerene can only be partially manipulated by simple processing techniques such as coating conditions and annealing, and a more rigorous design of the morphology should be implemented in the future. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 387–396  相似文献   

4.
The stability of poly(3‐hexylthiophene) (P3HT) helical structure has been investigated in vacuo and in amorphous polymer surrounding via molecular dynamics‐based simulations at temperatures below and above the P3HT melting point. The results show that the helical chain remains stable at room temperature both in vacuo and in amorphous surrounding, and promptly loses its structure at elevated temperatures. However, the amorphous surrounding inhibits the destruction of the helix at higher temperatures. In addition, it is shown that the electrostatic interactions do not significantly affect the stability of the helical structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2448–2456  相似文献   

5.
Organic thin film blends of P3HT semiconducting polymers and PCBM fullerenes have enabled large‐scale semiconductor fabrication pertaining to flexible and stretchable electronics. However, molecular packing and film morphologies can significantly alter mechanical stability and failure behavior. To further understand and identify the fundamental mechanisms affecting failure, a multiphase microstructurally based formulation and nonlinear finite‐element fracture methodology were used to investigate the heterogeneous deformation and failure modes of organic semicrystalline thin film blends. The multiphase formulation accounts for the crystalline and amorphous behavior, polymer tie‐chains, and the PCBM aggregates. Face‐on packing orientations resulted in extensive inelastic deformation and crystalline rotation, and this was characterized by ductile failure modes and interfacial delamination. For edge‐on packing orientations, brittle failure modes and film cracking were due to lower inelastic deformation and higher film stress in comparison with the face‐on orientations. The higher crystallinity of P3HT and larger PCBM aggregates associated with larger domain sizes, strengthened the film and resulted in extensive film cracking. These predictions of ductile and brittle failure are consistent with experimental observations for P3HT:PCBM films. The proposed predictive framework can be used to improve organic film ductility and strength through the control of molecular packing orientations and microstructural mechanisms. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 896–907  相似文献   

6.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   

7.
We study the correlation between Förster resonance energy transfer (FRET) and optical gain properties in conjugated polymer blends based on regioregular poly(3‐hexylthiophene) (P3HT) and poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT). First, FRET dynamics are investigated with femtosecond transient absorption spectroscopy observing a sub‐picosecond energy transfer from F8BT to P3HT (550 fs) at medium doping levels (40% wt P3HT in F8BT). Amplified spontaneous emission (ASE) is then characterized in blends upon exciting predominantly the host and guest polymers, respectively. The corresponding density of absorbed photons at threshold conditions is compared upon host or guest photoexcitation as a method to quantitatively determine the FRET‐assisted ASE efficiencies. We observe a reduction in ASE efficiency upon host photoexcitation of 20%, in the best case, respect to guest photoexcitation. Our results confirm that even in strongly coupled host:guest mixtures delayed exciton population by energy transfer is subtle to losses ascribed to exciton–exciton annihilation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2311–2317.  相似文献   

8.
3‐hexylthiophene was electropolymerized on a carbon nanotube (CNT)‐laden fluorine‐doped tin oxide substrate. Scanning electron microscopy and Raman spectroscopy revealed that the polymer was infused throughout the thickness of the 150‐nm thick CNT mat, resulting in a conducting composite film with a dense CNT network. The electropolymerized poly(3‐hexylthiophene) (e‐P3HT)/CNT composites exhibited photoluminescence intensity quenching by as much as 92% compared to the neat e‐P3HT, which provided evidence of charge transfer from the polymer phase to the CNT phase. Through‐film impedance and J‐V measurements of the composites gave a conductivity (σ) of 1.2 × 10?10 S cm?1 and zero‐field mobility (μ0) of 8.5 × 10?4 cm2 V?1 s?1, both of which were higher than those of neat e‐P3HT films (σ = 9.9 × 10?12 S cm?1, μ0 = 3 × 10?5 cm2 V?1 s?1). In electropolymerized samples, the thiophene rings were oriented in the (010) direction (thiophene rings parallel to substrate), which resulted in a broader optical absorbance than for spin coated samples, however, the lack of long‐range conjugation caused a blueshift in the absorbance maximum from 523 nm for unannealed regioregular P3HT (rr‐P3HT) to 470 nm for e‐P3HT. Raman spectroscopy revealed that π‐π stacking in e‐P3HT was comparable to that in rr‐P3HT and significantly higher than in regiorandom P3HT (ran‐P3HT) as shown by the principal Raman peak shift from 1444 to 1446 cm?1 for e‐P3HT and rr‐P3HT to 1473 cm?1 for ran‐P3HT. This work demonstrates that these polymer/CNT composites may have interesting properties for electro‐optical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1269–1275, 2011  相似文献   

9.
Electrospinning of fibers composed of poly(3‐hexylthiophene) (P3HT), fullerene derivative, phenyl‐C61‐butyric acid methyl ester (PCBM), and single‐walled carbon nanotubes (SWNT) is reported. While of great promise for photovoltaic applications, morphological control of functional structures is a great challenge for most processing methods. It is demonstrated that the use of a tailor‐made block‐copolymer for dispersion of individual SWNT enables the preparation of stable dispersions of individual tubes that may be further cospun from chloroform solutions with PCBM and P3HT into submicron fibers. The block copolymer used to mediate the colloidal and interfacial interactions in the combined system enables the spinning of centimeters long and uniform fibers. Structural characterization indicates a high degree of ordering and alignment within the fibers and absorption and quenching of the photoluminescence indicate significant interactions among the components. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1263–1268, 2011  相似文献   

10.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

11.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

12.
Donor–acceptor block copolymers (BCP), incorporating poly(3‐hexylthiophene) (P3HT), and a polystyrene copolymer with pendant fullerenes (PPCBM) provide desired stable nanostructures, but mostly do not exhibit balanced charge carrier mobilities. This work presents an elegant approach to match hole and electron transport in BCP by blending with molecular PCBM without causing any macrophase separation. An insufficient electron mobility of PPCBM can be widely compensated by adding PCBM which is monitored by the space‐charge limited current method. Using X‐ray diffraction, atomic force microscopy, and differential scanning calorimetry, we verify the large miscibility of the PPCBM:PCBM blend up to 60 wt % PCBM load forming an amorphous, molecularly mixed fullerene phase without crystallization. Thus, blending BCP with PCBM substantially enhances charge transport achieving an electron mobility of μe=(3.2 ± 1.7) × 10?4 cm2V?1s?1 and hole mobility of μh=(1.8 ± 0.6) × 10?3 cm2V?1s?1 in organic field‐effect transistors (OFET). The BCP:PCBM blend provides a similarly high ambipolar charge transport compared to the established P3HT:PCBM system, but with the advantage of an exceptionally stable morphology even for prolonged thermal annealing. This work demonstrates the feasibility of high charge transport and stable morphology simultaneously in a donor–acceptor BCP by a blend approach. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1125–1136  相似文献   

13.
The effect of replacing [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) by its multiadduct analogs (bis‐PCBM and tris‐PCBM) in bulk heterojunction organic solar cells with poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) is studied in terms of blend film microstructure, photophysics, electron transport properties, and device performance. Although the power conversion efficiency of the blend with bis‐PCBM is similar to the blend with PCBM, the performance of the devices with tris‐PCBM is considerably lower as a result of small photocurrent. Despite the lower electron affinity of the fullerene multiadducts, μs‐ms transient absorption measurements show that the charge generation efficiency is similar for all three fullerenes. The annealed blend films with multiadducts show a lower degree of fullerene aggregation and lower P3HT crystallinity than the annealed blend films with PCBM. We conclude that the reduction in performance is due largely to poorer electron transport in the blend films from higher adducts, due to the poorer fullerene network formation as well as the slower electron transport within the fullerene phase, confirmed here by field effect transistor measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

14.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

15.
In this article, the synthesis of a series of conjugated rod–rod block copolymers based on poly(3‐hexylthiophene) (P3HT) and poly(phenyl isocyanide) (PPI) building blocks in a single pot is presented. Ni‐catalyzed Grignard metathesis polymerization of 2,5‐dibromo‐3‐hexylthiophene and subsequent addition of 4‐isocyanobenzoyl‐2‐aminoisobutyric acid decyl ester in the presence of Ni(dppp)Cl2 as a single catalyst afford P3HT‐b‐PPI with tunable molecular weights and compositions. In solid state, microphase separation occurred as differential scanning calorimetric analysis of P3HT‐b‐PPI revealed two glass transition temperatures. In solutions, the copolymers can self‐assemble into spherical aggregates with P3HT core and PPI shell in tetrahydrofuran and exhibit amorphous state in CHCl3. However, atomic force microscopy revealed that the block copolymers self‐assemble into nanofibrils on the substrate. These unique features warrant the resultant conjugated rod–rod copolymers' potential study in organic photovoltaic and other electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2939–2947  相似文献   

16.
Bulk heterojunctions (BHJs) based on semiconducting electron–donor polymer and electron–acceptor fullerene have been extensively investigated as potential photoactive layers for organic solar cells (OSCs). In the experimental studies, poly‐(3‐hexyl‐thiophene) (P3HT) polymers are hardly monodisperse as the synthesis of highly monodisperse polymer mixture is a near impossible task to achieve. However, the majority of the computational efforts on P3HT: phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM)‐based OSCs, a monodisperse P3HT is usually considered. Here, results from coarse‐grained molecular dynamics simulations of solvent evaporation and thermal annealing process of the BHJ are shared describing the effect of variability in molecular weight (also known as polydispersity) on the morphology of the active layer. Results affirm that polydispersity is beneficial for charge separation as the interfacial area is observed to increase with higher dispersity. Calculations of percolation and orientation tensors, on the other hand, reveal that a certain polydispersity index ranging between 1.05 and 1.10 should be maintained for optimal charge transport. Most importantly, these results point out that the consideration of polydispersity should be considered in computational studies of polymer‐based OSCs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 895–903  相似文献   

17.
Four polythiophene derivatives including regiorandom polymers P1 , P2 , and P3 and a regioregular polymer P4 , containing a phenyl side chain with electron‐withdrawing carbonyl groups such as an ester and a ketone at the 3‐position of the thiophene ring, were synthesized by Stille coupling reaction. Bulk‐heterojunction polymer solar cells (PSCs) based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) were fabricated, and their photovoltaic performances were evaluated for the first time. The PSC devices based on the regioregular polymer P4 :PCBM = 1:2 (w/w) exhibited a high‐open‐circuit voltage (Voc) of 0.943 V because of the low‐lying highest occupied molecular orbit energy level of P4 . The short π–π stacking distance (0.355 nm) in the parallel direction to the substrate and “face‐on” rich orientation were observed by the grazing incidence wide‐angle X‐ray scattering experiment, which might reflect higher Jsc and FF values of the P4 :[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) PSC device than others. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 875–887  相似文献   

18.
Conjugated graft copolymers consisting of a poly(3‐hexylthiophene) (P3HT) backbone and poly(9,9'‐dioctylfluorene) side chains (PF) with different grafting degrees were synthesized by the CuAAC reaction. The properties of these materials were studied by UV‐Vis and fluorescence spectroscopy. The former technique provides insight in their self‐assembly, while the latter is used to study the energy funneling from the PF side chains to the P3HT backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1252–1258  相似文献   

19.
To deepen the understanding of morphology evolution in bulk heterojunction P3HT:PCBM organic photovoltaics system by thermal treatment, domain‐size‐dependent interfacial energies were first determined by coarse‐grained molecular dynamics modelling and then used in Monte Carlo simulations of the morphology evolution. Thereby initial conditions associated with optimal interfacial surface area, continuous volume, as well as domain sizes, and spatial distributions of the phase separated domains were identified. In line with earlier studies, a 1:1 P3HT:PCBM blend ratio is found to exhibit the most efficient morphology for exciton dissociation and charge transport. Our simulations reveal that preseeding of P3HT crystal at the anode side prior to the annealing process will be instrumental to pin the formation of P3HT at the favorable electrode especially when seeding exceeds a threshold of 10% surface coverage, whereas denser seeding patterns beyond the threshold did not improve the active layer morphology further. The observed trilayer depth profile (in the absence of preseeded P3HT crystals) implies that the commonly used thickness 100 nm of the active layer is not ideal for ensuring that donor and acceptor phases dominate at opposite ends of the active layer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 270–279  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号