首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The slow-wave characteristics taking no account of space harmonics for periodically iris-loaded elliptical waveguides is presented. By using the field-matching method, the dispersion equation and the mean interaction impedance for odd and even hybrid modes of this structure are derived respectively. It is indicated from the numerical calculation results that changing the eccentricity can improve the dispersion characteristics and the interaction impedance for oHEM01 mode.  相似文献   

2.
左手介质椭圆光波导基模传播特性   总被引:1,自引:0,他引:1  
熊天信  杨儒贵 《光子学报》2006,35(7):1099-1102
在椭圆柱坐标系中,采用分离变量方法,得出了左手介质椭圆光波导本征方程的近似解,通过数值计算,分析了椭圆波导偏心率、左手介质的电容率、磁导率对椭圆光波导基模传播特性的影响,并将左介质光波导与右手介质光波导基模特性进行对比,得出左手介质光波导的基模特性与右手介质光波导基模特性差别不大的结论.  相似文献   

3.
In this paper, the dispersion characteristics of a plasma filled elliptical Bragg waveguide is investigated. The modal characteristic equations of the proposed Bragg waveguide for both ω > ωp and ω < ωp are derived. The effects of plasma frequency, numbers of cladding layers and the eccentricity of elliptical Bragg waveguide on the dispersion characteristics are studied. The analysis shows that the introduction of plasma in the proposed waveguide allows to control the propagation of modes.  相似文献   

4.
Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a new type of Bragg waveguide having elliptical core cross section with multilayered cladding is derived. The eigen equation is written in the form of Mathieu and the modified Mathieu functions and a dispersion relation is obtained for various modes supported by the proposed Bragg waveguide. The cutoff frequencies for several lower order even-odd modes have been calculated and their propagation characteristics are plotted. The results show that the dispersion curves are discontinuous and modes can exist only in particular wavelength bands. The effects of elliptical eccentricity on the mode cutoff values and mode transmission are addressed. Finally, the modal birefringence in the said waveguide is also estimated.  相似文献   

5.
This paper gives the investigations of the fundamental wave of a free elliptical helix slow-wave structure (SWS) with arbitrary eccentricity. The wave properties including the phase velocity characteristics, interaction impedance and the longitudinal electric field distribution of this mode has been fully studied. It is found that, when the eccentricity increases, the interaction impedance and the operating frequency of such SWS will be improved, which allows to have a higher gain and operating in a higher frequency band. Furthermore, the field configuration is different from that of a round helix; the azimuthal distribution of the E-field follows with the angular Mathieu function of the first kind, even with mode of zero. In radial, E-field is elliptical surface wave. When the eccentricity tends to zero, all the characteristics will be smoothly degenerates to the case of round helix correspondingly.  相似文献   

6.
Efficient versions of the finite element and integral equation methods have been developed to analyse the guided (surface) modes of an arbitrary shaped optical fibre. The first approach is based on the replacement of the open waveguide by the screen guide structure with an artificial impedance wall. The integral equation is solved by the adaptive collocation technique. The methods are used to calculate the dispersion characteristics of the elliptical fibre modes and their cut-off frequencies. The results obtained are compared with those calculated by other methods.  相似文献   

7.
将任意形状槽的连续轮廓近似用一系列相连的矩形阶梯近似,利用各阶梯面上导纳的匹配,以及槽与互作用区边界场的连续与匹配条件,获得了具有任意槽的矩形波导栅慢波结构的色散方程和耦合阻抗的表达式,并进行理论上的验证.加工制作了矩形槽波导栅模型,冷测表明理论值与测量值相吻合.分别求解几种特殊槽形矩形波导栅慢波结构的色散特性及耦合阻抗,其中,三角形结构的色散和耦合阻抗均最弱,而倒梯形结构色散最强,耦合阻抗最大. 关键词: 矩形波导栅 任意槽 色散特性 慢波结构  相似文献   

8.
An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.  相似文献   

9.
曲折圆形槽波导慢波系统的高频特性   总被引:1,自引:1,他引:1       下载免费PDF全文
 对曲折圆形槽波导新型慢波系统的高频特性进行了研究,通过理论分析和数值计算,得到了它的色散曲线和耦合阻抗表达式,并分析了结构参数变化对色散特性和耦合阻抗的影响。研究表明:当周期变小时色散减弱,耦合阻抗增加;而增大直波导长度时色散变弱,但同时耦合阻抗也会下降。因此较小的周期有利于改善曲折圆形槽波导慢波电路的高频特性。鉴于这种电路的耦合阻抗较低,可以适当地减小直波导长度来提高耦合阻抗。曲折槽波导结合了曲折波导散热能力强、色散特性好、容易加工和槽波导单模工作、低损耗、大尺寸等优点,在毫米波及亚毫米波段的行波管中具有较好的发展前景。  相似文献   

10.
何俊  魏彦玉  宫玉彬  王文祥 《中国物理 B》2011,20(5):54102-054102
The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated.Expressions of dispersion characteristics,normalized phase velocity and interaction impedance of this structure are derived and numerically calculated.The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS.Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed.It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained,indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction.The small signal gain property is investigated for ensuring the improvement of bandwidth.Meanwhile,with comparable dispersion characteristics,the transverse section dimension of this novel structure is much smaller than that of conventional one,which indicates an available way to reduce the weight of traveling-wave tube.  相似文献   

11.
The disk-loaded waveguide with bandwidth of only 2%-8% is a kind of narrow band structure. A new rib-loaded disk-loaded waveguide with wider bandwidth than the general one is suggested in the paper. The author develops the method of calculating the axial periodic waveguide by expanding the slow-wave structure's boundary function in Fourier series, so that it can be adopted in rib-loaded disk-loaded waveguide. By the method, the dispersion characteristics and interaction impedance of a Ka band rib-loaded disk-loaded waveguide are analyzed.  相似文献   

12.
A rigorous electromagnetic analysis of a circular waveguide loaded with axially periodic annular discs was developed in the fast-wave regime, considering finite axial disc thickness and taking into account the effect of higher order space harmonics in the disc-free region and higher order modal harmonics in the disc-occupied region of the structure. The quality of the disc-loaded circular waveguide was evaluated with respect to its azimuthal interaction impedance that has relevance to the gain of a gyrotron millimeter-wave amplifier (gyro-traveling-wave tube) in which such a loaded waveguide finds application as a wideband interaction structure. The results of electromagnetic analysis of the structure with respect to both the dispersion and azimuthal interaction impedance characteristics were validated against the commercially available code: high frequency structure simulator (HFSS). The analysis predicts that the value of the interaction impedance at a given frequency decreases with the increase of the disc hole radius and disc periodicity. The change of the axial disc thickness does not significantly change the value of the interaction impedance though it shifts the frequency range over which appreciable interaction impedance is obtained. Out of the three disc parameters, namely the disc hole radius, thickness and periodicity, the lattermost is most effective in controlling the value of the azimuthal interaction impedance. However, the passband of frequencies and the center frequency of the passband both decrease with the increase of the disc periodicity. Moreover, the disc periodicity that provides large azimuthal interaction impedance would in general be different from that giving the desired dispersion shape for wideband interaction in a gyro-TWT, suggesting a trade-off in the value of the disc periodicity to be chosen.  相似文献   

13.
220 GHz 折叠波导慢波结构   总被引:1,自引:1,他引:0       下载免费PDF全文
 优化设计了一种220 GHz的折叠波导慢波结构的尺寸,对其冷测特性如色散、耦合阻抗和衰减进行了分析。理论分析和软件仿真结果表明设计的折叠波导慢波结构在中心频率处具有较平缓的色散关系,较高的耦合阻抗和较低的电路衰减。互作用模拟表明,在电子注电压为20 kV,电流为10 mA时,27 mm(50个周期)的折叠波导慢波结构在220 GHz具有14.5 dB的增益,3 dB带宽为16.3 GHz(211.9~228.2 GHz)。  相似文献   

14.
Millimeter-wave traveling-wave tube(TWT) prevails nowadays as the amplifier for radar,communication and electronic countermeasures.The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity,fine heat dissipation,scalability to smaller dimensions for shorter wavelengths,compact structure and robust performance.Compared with the traditional closed structure,the open rectangular waveguide grating(ORWG) has wider bandwidth,lower cut-off frequency,and higher machining precision for higher working frequencies due to the open transverse.It is a potential structure that can work in the millimeter wave and even Terahertz band.The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation.The influences of the structure parameters are also discussed and compared,and the theoretical results agree well with the simulation results.Based on the study,the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.  相似文献   

15.
张瑞  王勇 《强激光与粒子束》2012,24(12):2858-2864
设计了导流系数1.53 P的电子枪,枪内场强低于22.1 kV/mm,阴极平均负载小于6.3 A/cm2;采用部分屏蔽流均匀场电磁聚焦系统,实现了对电子注的良好聚焦;设计了C波段/2模盘荷波导行波输出结构,采用CST软件对其色散特性、耦合阻抗进行了计算分析。首先以单间隙输出腔代替行波输出结构对5腔注-波互作用系统进行计算,确定了前4腔的设计参数,然后采用PIC模拟软件对具有盘荷波导结构的输出系统进行了三维模拟,获得了大于50 MW的输出功率,效率大于45%,饱和增益大于50 dB,盘荷波导结构间隙电压比单间隙输出腔下降30%,效率提高4%。  相似文献   

16.
A new type of partial-dielectric-loaded rectangular waveguide grating slow-wave structure (SWS) for millimeter wave traveling wave tube (TWT) is presented in this paper. The radio-frequency characteristics including the dispersion properties, the longitudinal electric field distribution and the beam-wave coupling impedance of this structure are analyzed. The results show that the dispersion of the rectangular waveguide grating circuit is weakened, the phase velocity is reduced and the position of the maximum E z is basically invariant after partially filling the dielectric materials in the rectangular waveguide grating SWS. Although the coupling impedance decreases a little, it still keeps above 40 Ω.  相似文献   

17.
提出脊加载同轴交错圆盘波导慢波结构,并用电磁场仿真软件HFSS对其色散特性和耦合阻抗进行了计算,分析了不同结构参数对其高频特性的影响。研究表明:脊加载同轴交错圆盘波导有较好的色散特性,它比非同轴结构的带宽有明显增加,同时可以降低慢波结构的相速,用作行波管慢波结构时可以降低工作电压。脊加载同轴交错圆盘波导是一种全金属结构,散热性能好,损耗低,在毫米波及亚毫米波段的行波管中有较好的应用前景。  相似文献   

18.
The periodic nonuniform folded waveguides are special structures, the physical dimension of which is between the periodic folded waveguide and the tapering period folded waveguide. Therefore, the synchronization between the microwave and the electron beam can be maintained in the whole interaction process and the periods are not tapered. In comparison with the tapering period folded waveguide, the theoretical analysis and the technological requirements for this structure are more convenient. In order to study this structure, the space harmonics are analysed, the conditions to make the m-th space harmonic synchronizing with the electron beam in the whole interaction process are present, and the dispersion curve and the coupling impedance curve are obtained by the simulation software HFSS.  相似文献   

19.
路志刚  宫玉彬  魏彦玉  王文祥 《中国物理》2006,15(11):2661-2668
A slow-wave structure (SWS) with two opposite gratings inside a rectangular waveguide is presented and analysed. As an all-metal slow-wave circuit, this structure is especially suited for use in millimetre-wave travelling wave tubes (TWTs) due to its advantages of large size, high manufacturing precision and good heat dissipation. The first part of this paper concerns the wave properties of this structure in vacuum. The influence of the geometrical dimensions on dispersion characteristics and coupling impedance is investigated. The theoretical results show that this structure has a very strong dispersion and the coupling impedance for the fundamental wave is several tens of ohms, but the coupling impedance for --1 space harmonic wave is much lower than that for the fundamental wave, so the risk of backward wave oscillation is reduced. Besides these, the CST microwave studio is also used to simulate the dispersion property of the SWS. The simulation results from CST and the theoretical results agree well with each other, which supports the theory. In the second part, a small-signal analysis of a double rectangular waveguide grating TWT is presented. The typical small-signal gain per period is about 0.45 dB, and the 3-dB small-signal gain bandwidth is only 4\%.  相似文献   

20.
The rectangular waveguide grating slow-wave structure (SWS) with arbitrary shaped grooves is presented and analyzed in this paper. As an all-metal slow-wave circuit, it has properties that can be used in high-power millimeter-wave or sub-millimeter wave traveling wave tube (TWT). The unified dispersion equation and the expression of coupling impedance are obtained in this paper by means of an approximate field-theory analysis, in which the profile of the groove is approximately replaced by a series of steps and the field continuity at the interface of two neighboring steps together with the field matching conditions at the interface between the groove region and the interaction region are employed. A rectangular groove SWS was manufactured and the cold measurement was made. The experimental data are in good agreement with the numerical calculation. The derived transcendental equations are resolved numerically for four classical structures such as rectangular, dovetail, ladder and cosine. Finally, taking the rectangular waveguide grating SWS with rectangular grooves for example, the influences of physical dimensions on dispersion relation and coupling impedance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号