首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 190 毫秒
1.
在反应温度550 ℃、空速5 500 h-1、H2S体积分数1.2%下对所研制的钼基催化剂进行了耐硫甲烷化活性评价,考察了反应气中添加H2O对Mo基催化剂耐硫甲烷化活性的影响。结果表明,反应气中添加水对Al2O3负载的Mo基催化剂可造成不可逆失活,而添加Co助剂及采用铈铝复合载体的催化剂其稳定性、活性得到了改善和提高。Co的添加能保护Mo基催化剂上的活性组分MoS2,抑制添加水导致的不可逆失活。当反应气中加入水时,催化剂上主要发生水汽变换反应,且随着水含量升高,水汽变换反应速率增大,会严重影响甲烷化反应的进行。此外,随着水含量的增加,其对催化剂的耐硫甲烷化活性和稳定性的影响程度变大。  相似文献   

2.
将柠檬酸(CA)作为络合剂添加至CeO_2-Al_2O_3复合载体中,并考察了CA对MoO_3/CeO_2-Al_2O_3催化剂耐硫甲烷化性能的影响。活性评价结果显示,催化剂活性随柠檬酸添加量的增大而增大,当n(CA)/n(Ce)为3时,CO转化率可达60%。催化剂BET、XRD、H2-TPR及XPS等表征结果表明,在CeO_2-Al_2O_3复合载体中加入CA,可以增大载体及催化剂的比表面积,使Mo物种分散性提高。同时,CA对Ce物种起络合作用,致使催化剂表面Ce元素含量明显增加,进而减弱了活性组分Mo物种与载体间相互作用力,并最终导致了催化剂活性的提升。  相似文献   

3.
含La耐硫水煤气变换催化剂的研究   总被引:5,自引:1,他引:5  
CoMoK/Al_2O_3耐硫水煤气变换催化剂中加入La_2O_3后其活性与含量和处理温度有关。含有0.5—1.0%La_2O_3的催化剂和载体经600℃处理活性和耐热性最高。在500℃进行强化反应后La助化的催化剂活性下降~50%,而无La的下降~70%。以H_2S/H_2重新处理减活后的催化剂可以使活性逐渐恢复,但含La的比不含La的恢复得快。由催化剂的硫化过程和程序升温还原及吡啶吸附实验未能发现两种催化剂有明显的区别。XPS测定结果发现La助化的催化剂在反应时,其Mo可以保持较好的分散和较少形成Mo~(6 ),而Mo~(6 )对反应是无活性的。  相似文献   

4.
用磁天平和XRD研究Co/Mo/γ—Al2O3催化剂中钴的性质   总被引:1,自引:0,他引:1  
王大祥  王嘉福 《分子催化》1993,7(6):479-482
Co/Mo/γ-Al_2O_3硫化物是重要的加氢精制、耐硫变换和耐硫甲烷化等反应用催化剂,因为此类催化剂中钴和钼的负载量较小(5~10wt%),且存在状态复杂,给催化剂表征带来困难.随着磁性测量技术的进步,磁性分析方法已成为催化剂表征的有力手段.钴作为一种具有特殊磁性的元素,在不同晶型或不同的化学环境中表现出不同的磁性,为用磁性分析方法研究Co/Mo/r-Al_2O_3催化剂的结构提供了便利条件.  相似文献   

5.
汪信  忻新泉  戴安邦 《催化学报》1986,7(3):250-255
负载型甲酸镍在氢气中热分解时,发生CO,CO甲烷化反应,CH_4的生成量因载体而异。载体的碱性对CO_2的甲烷化活性有明显的影响,Ni-Al_2O_3体系添加La_2O_3后,甲烷化活性较佳。载体不仅起分散金属的作用,而且有吸附、储存和转移CO_2的功能。  相似文献   

6.
王真真  何珍珍  韩文锋  刘化章 《化学通报》2016,79(12):1139-1144
本文研究了前驱体MoO_3的负载量、浸渍温度和焙烧温度等制备条件对Mo S2/Al_2O_3耐硫甲烷化催化剂性能的影响,并通过XRD和H2-TPR表征了催化剂的物相和还原性能。结果表明,随着负载量增加,MoO_3与Al_2O_3间的相互作用增强,Al2(Mo O4)3相增多,导致催化剂更难被还原硫化,MoO_3还原温度升高。浸渍温度对CO转化率和CH4选择性有一定的影响,浸渍温度为70℃时,MoO_3的生成增多,且还原温度最低,CO转化率较高,而CH4选择性和CO_2选择性变化不大。随着焙烧温度升高,CO转化率先升高后降低,对CH4和CO_2选择性影响不大,其中以450℃焙烧的CO转化率最高,600℃焙烧的CO转化率最低。当焙烧温度在400~450℃时,Al2(Mo O4)3和Mo4O11的特征峰基本上消失,能够完全生成MoO_3,且结晶度较好。因此,合适的焙烧温度为400~450℃。  相似文献   

7.
着重研究了挤条成型的纳米Mo/HZSM-5催化剂在甲烷无氧芳构化反应中的催化性能.结果表明,Al2O3载体的加入减少了催化剂的B酸量,对甲烷无氧芳构化反应不利,导致甲烷转化率降低,并且催化剂积碳严重.通过适量添加SiO2载体,减少Al2O3载体的量,可以使催化剂的B酸量提高,从而可提高甲烷转化率,并且可降低催化剂的积碳量.  相似文献   

8.
利用程序升温还原 (TPR)技术 ,研究了ZrO2 对Co/Al2 O3、Mo/Al2 O3、Mo -K/Al2 O3以及Co -Mo -K耐硫变换催化剂氧化还原性能的影响。结果表明 ,ZrO2 的引入 ,使活性组分在载体表面分散的更好 ,促进了Mo -K活性相的形成 ,使Co和Mo的还原变得容易 ,并起到抑制催化剂在反应中被重新氧化的作用。  相似文献   

9.
用共沉淀法制备Ce O_2-Zr O_2复合氧化物载体,浸渍法制备Ni_aCu_b(ZrCeO_4)_8O_x催化剂;用X射线衍射技术(XRD),程序升温还原(H_2-TPR)技术对催化剂的物相结构和还原特性进行表征;研究了催化剂对CO水煤气变换反应的活性与选择性,考察了催化剂组成对CO水煤气变换反应的影响。实验结果表明:Cu_aFe_b(Zr Ce_4)_8O_x具有稳定的立方晶相结构,催化剂对水煤气变换反应表现了良好的活性;载体表面的铜镍物种间存在相互作用,Ni0为甲烷化反应的活性中心;在400℃下,以(Ni_6Cu_4)(Zr Ce_4)_8O_x催化CO水煤气变换反应,CO转化率达到95.42%,甲烷的产率为5.22%;550℃下使用该催化剂时,也未出现明显失活。  相似文献   

10.
根据单层分散原理,设计了制备单层(或亚单层)分散型的合成低碳混合醇耐硫催化剂MoS_2/K_2CO_3/γ-Al_2O_3的新方法:先把比MoS_2易于分散的MoO_3分散到γ-Al_2O_3表面上形成单层或亚单层分散的MoO_3/γ-Al_2O_3母体,再进行硫化/还原,最后添加K_2CO_3。CO加氢反应结果证实:(1)该催化剂具有良好的抗硫性能;(2)以单个Mo原子计的活性较非单层(或亚单层)分散型的催化剂的活性成倍增加;(3)使低碳混合醇中C_2~+OH的含量增加,更符合作为汽油添加燃料的要求。  相似文献   

11.
将柠檬酸(CA)作为络合剂添加至CeO2-Al2O3复合载体中,并考察了CA对MoO3/CeO2-Al2O3催化剂耐硫甲烷化性能的影响。活性评价结果显示,催化剂活性随柠檬酸添加量的增大而增大,当n(CA)/n(Ce)为3时,CO转化率可达60%。催化剂BET、XRD、H2-TPR及XPS等表征结果表明,在CeO2-Al2O3复合载体中加入CA,可以增大载体及催化剂的比表面积,使Mo物种分散性提高。同时,CA对Ce物种起络合作用,致使催化剂表面Ce元素含量明显增加,进而减弱了活性组分Mo物种与载体间相互作用力,并最终导致了催化剂活性的提升。  相似文献   

12.
程序升温脱附法对低变反应体系的吸-脱附研究   总被引:3,自引:1,他引:2  
本文采用程序升温脱附法(TPD)研究了低变反应各组分CO、H2O、CO2和H2在Cu/ZnO/A12O3型低变催化剂上的吸-脱附行为,并对与Cu/ZnO/A12O3具有可此相对组成的六种样品进行了类似的讨论,通过对所得TPD谱图的定性分析发现:构成Cu/ZnO/A12O3型低变催化剂的各个组元对低变反应各组分的吸-脱附作用互不相同,且不同的组元具有各自的吸-脱附特征。  相似文献   

13.
在0 到12 mL·L-1 (体积分数φ=0.00%-1.20%) 范围内考察了不同H2S 浓度对25% (质量分数, w)MoO3/Al2O3和5% (w) CoO-25%MoO3/Al2O3催化剂甲烷化性能的影响. 结果表明, 5%CoO-25%MoO3/Al2O3的甲烷化活性随H2S浓度的增加单调上升, 而25%MoO3/Al2O3对H2S浓度并不敏感. 对比这两种催化剂发现, 只有在H2S浓度高于0.40% (φ) 时, 在25%MoO3/Al2O3中添加Co助剂才会有促进作用; H2S浓度低于0.40% (φ)时, Co助剂会抑制25%MoO3/Al2O3催化剂的甲烷化活性. 分别对反应前后的催化剂表征发现, H2S浓度的改变不会对两种催化剂的物理结构产生明显的影响, 而是通过影响催化剂表面的金属硫化物活性位来影响催化剂的甲烷化性能. 耐硫甲烷化反应体系中较高的硫含量下Co助剂才表现出对25%MoO3/Al2O3催化剂的促进作用. 该研究明确了在MoO3/Al2O3催化剂中添加Co助剂的硫化氢浓度范围, 为工业上选择合适的催化剂提供了依据.  相似文献   

14.
采用固相反应法制备了钙钛矿结构的BaZr0.9Y0.1O3,并用BaZr0.9Y0.1O3作为载体负载Fe2O3,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)观察负载型催化剂的晶相结构和微观形貌,同时考察了制备的催化剂的逆水煤气反应催化活性。结果表明,BaZr0.9Y0.1O3粉体1200℃煅烧5h时,负载型催化剂具有较好的催化活性;BaZr0.9Y0.1O3对逆水煤气反应有一定的催化作用,负载少量的Fe2O3催化剂可以明显促进CO2还原,在空速为1.13h-1,温度为650℃时,CO收率可以达到31%;催化剂经过长时间运行催化效果良好,制备的催化剂活性较稳定。  相似文献   

15.
针对中低温锅炉烟气脱硝技术需求的特点,采用等体积浸渍法,以V_2O_5为活性组分、MoO_3为助剂,制备了高钒高钼含量的V_2O_5-MoO_3/TiO_2型粉末和平板式SCR脱硝催化剂,考察了活性组分和助剂含量对催化剂活性以及抗SO_2和H_2O中毒性能的影响,对反应前后的催化剂进行了微观表征,并针对最优催化剂研究了其在不同烟气工况下催化剂的脱硝性能。结果表明,提升V_2O_5负载量可以有效提高催化剂的脱硝活性;MoO_3助剂的添加也可以提高催化剂的脱硝活性。XPS、XRF、FTIR等表征结果表明,MoO_3的含量会影响催化剂中V~(4+)/V~(5+)的比值,其相对含量的增加有利于催化剂中非化学计量钒物种的形成以及化学吸附氧比例的增加,钼与钒物种间的交互作用是抑制SO_2和H_2O对催化剂的毒化作用的关键。3V_2O_5-10MoO_3/TiO_2平板式催化剂在温度为200℃、空速为3 500 h~(-1)含SO_2和H_2O烟气条件下,经30 d连续反应,脱硝效率稳定维持在82%左右,该催化剂在中低温下具有优异的抗SO_2和H_2O中毒性能以及稳定性。  相似文献   

16.
通过共沉淀法制备了ZrO2和Al2O3载体,采用等体积浸渍法制备了MoO3质量分数为5%的Mo/ZrO2和Mo/Al2O3催化剂,并用于甲烷化反应。在三种反应气氛下对两种预硫化的Mo基催化剂进行评价,发现ZrO2载体均可显著促进甲烷化反应,同时能够促进水汽变换(WGS)反应。通过XRD、H2-TPR、XPS和TEM等表征发现,两种载体上Mo物种的硫化程度以及暴露的活性位数量不同,从而导致两种催化剂上催化性能差异显著。与Mo/Al2O3相比,Mo/ZrO2催化剂上的MoO3更易被还原,硫化程度也更高,并且Mo4+的含量更高,Mo6+的含量更低。虽然ZrO2载体上MoS2尺寸较大,边位置的Mo比例有所降低,但是由于MoS2沿ZrO2颗粒表面弯曲生长,使得MoS2基面成为反应的活性位;因此,Mo/ZrO2催化剂在甲烷化与WGS反应中表现出更优异的催化性能。  相似文献   

17.
考察了不同还原气氛处理CoFe/SBA-15催化剂对F-T反应性能的影响。结果表明,H2气氛下有利于六方钴的生成;催化剂的活性取决于钴含量,随着钴含量的增加,F-T反应中CO转化率增加,C5+选择性增加。随着铁含量的增加,催化剂表现了较高的CO2选择性。CO还原有利于立方钴的生成,导致催化活性相比H2还原的催化剂活性要低。同时CO还原容易产生积炭使催化剂的钴活性位被覆盖,导致甲烷选择性随着钴含量增加而升高。但碳化铁的生成有利于提高20Fe/SBA-15催化剂的活性,有利于低碳烃生成及C2~4烃烯烷比增加。  相似文献   

18.
Ni-Fe/γ-Al2O3双金属催化剂的制备及其CO甲烷化性能研究   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了Ni-Fe/γ-Al2O3双金属催化剂和Ni/γ-Al2O3、Fe/γ-Al2O3单金属催化剂,在连续流动微反装置上考察了催化剂的CO甲烷化催化活性,采用XRD、N2物理吸附、H2-TPR、H2-TPD和TPSR等手段对催化剂进行表征。结果表明,Ni-Fe/γ-Al2O3双金属催化剂中Ni、Fe之间产生了明显的相互作用,还原后催化剂中形成Ni-Fe合金,对氢气吸附量显著增加。在CO体积分数为0.5%、空速5000h-1、常压的反应条件下,Ni-Fe/γ-Al2O3双金属催化剂表现出高的甲烷化活性,220℃时将CO完全转化为甲烷。  相似文献   

19.
以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号