首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of carbon nanotubes in materials applications has been slowed due to nanotube insolubility and their incompatibility with polymers. We recently developed two protocols to overcome the insoluble nature of carbon nanotubes by affixing large amounts of addends to the nanotube sidewalls. Both processes involve reactions with aryl diazonium species. First, solvent-free functionalization techniques remove the need for any solvent during the functionalization step. This delivers functionalized carbon nanotubes with increased solubility in organic solvents and processibility in polymeric blends. Additionally, the solvent-free functionalization process can be done on large scales, thereby paving the way for use in bulk applications such as in structural materials development. The second methodology involves the functionalization of carbon nanotubes that are first dispersed as individual tubes in surfactants within aqueous media. The functionalization then ensues to afford heavily functionalized nanotubes that do not re-rope. They remain as individuals in organic solvents giving enormous increases in solubility. This protocol yields the highest degree of functionalization we have obtained thus far-up to one in nine carbon atoms on the nanotube has an organic addend. The proper characterization and solubility determinations on nanotubes are critical; therefore, this topic is discussed in detail.  相似文献   

2.
碳纳米管共价功能化*   总被引:1,自引:0,他引:1  
肖奇  王平华  司知蠢 《化学进展》2007,19(1):101-106
碳纳米管由于其独特的结构与优异的各项性能,在许多领域具有巨大的应用潜力,已引起了广泛的关注。由于碳纳米管不溶于水和有机溶剂,极大地制约了其性能应用,因此碳纳米管的功能化就成为目前研究的热点。本文侧重于碳纳米管的共价功能化,详细讨论了碳纳米管不同位置共价功能化的研究进展。  相似文献   

3.
聚丙烯酸功能化多壁碳纳米管   总被引:1,自引:0,他引:1  
Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.  相似文献   

4.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

5.
苑伟康  吴洪  姜忠义  许松伟 《有机化学》2006,26(11):1508-1517
碳纳米管(carbon nanotubes, CNTs)的溶解性和分散性较差是目前制约其广泛应用及在一些有特殊要求的领域(如生物技术)应用的主要原因之一. 对CNTs进行共价修饰是改善其溶解性和分散性的有效方法之一. 目前CNTs的共价修饰主要通过两类反应来实现: 羧基的衍生反应和直接加成反应. 介绍了基于这两种反应的几种共价修饰方法, 比较了各种修饰方法的优缺点及其对CNTs的溶解性和分散性的改善效果.  相似文献   

6.
The afterglow of an atmospheric pressure plasma has been used for the fast oxidative functionalization of multi-walled carbon nanotubes (MWCNTs). Scanning electron microscopy and Raman spectroscopy demonstrate that the MWCNT morphology is mostly preserved when the MWCNTs are dispersed in a solvent and injected as a spray into the plasma. Contact angle measurements show that this approach enhances the wettability of MWCNTs and reduces their sedimentation in an aqueous dispersion. X-ray photoelectron spectroscopy, IR spectroscopy, and electrokinetic measurements show that oxygen plasma incorporates about 6.6 at.% of oxygen and creates mainly hydroxyl and carboxyl functional groups on the MWCNT surface. The typical effective treatment time is estimated to be in the range of milliseconds. The approach is ideally suited for combination with the industrial gas phase CVD synthesis of MWCNTs.  相似文献   

7.
We demonstrate the noncovalent modification of multiwalled carbon nanotubes (MWNTs) immersed in aqueous solution using the ionic-complementary peptide EFK16-II. This modification presumably arises through the interaction between the hydrophobic side of the EFK16-II and MWNT sidewalls and orients hydrophilic functional groups toward the solution phase and enables them to form highly stable dispersions in water. This stability can be attributed to the electrostatic repulsion between self-assembled peptides on the MWNTs. This repulsion as determined by ζ potential measurements increases as the pH diverges from the isoelectric point of ~6.7 for EFK16-II. This trend is confirmed by dynamic light scattering measurements of the suspensions showing a decrease in their particle size as the ζ potential increases. These EFK16-II-MWNT suspensions have been used to modify mica surfaces. Atomic force microscopy and scanning electron microscopy images show that this leads to a uniform distribution of individual modified MWNTs on the mica surfaces. Transmission electron microscopy reveals images of well-dispersed fibers with dimensions similar to those of individual MWNTs. Tissue culture plates previously contacted with EFK16-II-modified MWNTs have been shown to have enough biocompatibility for growth and attachment of cells. The biocompatibility and enhanced electrical conductivity that should result from the modification with these EFK16-II-MWNT suspensions opens up their use in a number of potential biomedical applications such as the design of bioelectrode interfaces and fabrication of biosensors with high sensitivity.  相似文献   

8.
The electrokinetic behavior and stability of aqueous suspensions containing serpentine minerals of different deposits have been studied. Crystallochemical analyses carried out by X-ray diffraction, IR spectroscopy, TEM, DTA/TG, and XRF revealed that all samples are lizardite-type serpentines with a similar chemical composition. It has been determined that the electrokinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on surface. So, the low isoelectric point observed in some samples has been linked to values of this ratio lower than that of the ideal lizardite (Mg/Si=1.5). Dissolution studies have shown that the removal of Mg cations from the solid at speeds faster than that theoretically expected (Mg/Si=1.5), i.e., incongruent dissolution, is responsible for the enrichment of Si cations on surface. Therefore, it has been clearly established that the surface charge value developed in the lizardite/aqueous electrical interface is a function of the lizardite surface alteration grade. Copyright 2000 Academic Press.  相似文献   

9.
Sonication has been widely used in the dispersal of carbon nanotubes (CNTs) in various liquids as well as in their functionalization in aqueous acids. Here, for the first time, we study the sonication of multiwalled CNTs (MWCNTs) in deionized water. Our results indicate an improvement in the aqueous dispersal of MWCNTs as well as an increase in their adhesive interaction with Au substrates. Field emission scanning electron and high-resolution transmission electron microscopies as well as X-ray photoelectron, photoacoustic Fourier transform IR, and Raman spectroscopies have shown this to be due to the production of low concentrations of O-containing functionalizations (alcohol, carbonyl, acid, with the total O concentration being approximately 2%), without damaging the basic CNT structure; this production of functional groups is mirrored by the disappearance of -CH(n) groups existing on the pristine CNTs. These new functional groups are capable of hydrogen bonding, which plays an important role in their aqueous dispersal and enhanced substrate interactions.  相似文献   

10.
We report here the successful functionalization of single‐walled carbon nanotubes with bioinspired sugar and phosphocholine polymeric structures via surface‐initiated atom transfer radical polymerization. The surface‐polymer‐coated carbon nanotubes have been systematically analyzed by Raman, infrared, ultraviolet–visible, and nuclear magnetic resonance spectroscopy and high‐resolution transmission electron microscopy, which give strong evidence of successful functionalization. The successful aqueous dispersion of the functionalized carbon nanotubes also indicates that functionalization has been achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6558–6568, 2006  相似文献   

11.
We demonstrate the dispersion and noncovalent functionalization of carbon nanotubes in water using peptide amphiphiles each consisting of a short hydrophobic alkyl tail coupled to a more hydrophilic peptide sequence. The assembly of peptide amphiphile molecules on the surfaces of carbon nanotubes adds biofunctionality to these one-dimensional conductors and simultaneously eliminates the hydrophobic nanotube-water interface, thus dispersing them in the aqueous medium. This should occur without the degradation of their structural, electronic, and optical properties caused by covalent functionalization and without the need for specific peptide sequences designed to bind with nanotube surfaces. The encapsulation by peptide amphiphiles is confirmed using transmission electron microscopy and optical absorbance spectroscopy and may have significant future applications in biosensing or medicine.  相似文献   

12.
A systematic investigation on the unusual attachment of labile deuterium to carbon nanotubes in deuterated water and alcohols is reported. The carbon nanotubes were solubilized through the established functionalization of the nanotube-bound carboxylic acids to allow solution-phase reaction and characterization. The deuterium attachment was found under several experimental conditions, including the use of deuterated ethanol as a co-reactant in the nanotube functionalization reaction and the refluxing of functionalized or simply purified carbon nanotubes in deuterated water and alcohols. The solubility of the functionalized carbon nanotube samples in common organic solvents and water allowed unambiguous (2)H NMR characterization. The reproducible broad (2)H NMR signal at approximately 6.5 ppm is assigned to carbon nanotube-attached deuterium species. The assignment is supported by the results from FT-IR measurements. The carbon-deuterium interaction is so strong that the corresponding vibration resembles the typical C-D stretching mode in the characteristic frequency region. The FT-IR peak intensities also correlate well with the (2)H NMR signal integrations in a series of samples. Mechanistic implications of the results are discussed.  相似文献   

13.
Surface oxidation can alter physicochemical properties of multiwalled carbon nanotubes (MWCNTs) and influence their aqueous stabilization. Many techniques have been used to characterize the physicochemical properties and aqueous stabilization of MWCNTs. However, the relationship between the change in physicochemical property and the aqueous stabilization of MWCNTs merits more studies, and the multiple characterization techniques have not been well compared. This study systematically and comparatively investigated the effect of oxidation on the physicochemical properties and aqueous stabilization of MWCNTs using multiple analysis methods. Increased surface area, disclosed tube ends, defects on the sidewalls, disruption of the electronic structure, and removal of metal catalysts and amorphous carbon were observed for the oxidized MWCNTs (o-MWCNTs) using the multipoint Brunauer-Emmett-Teller (BET) method, transmission electron microscope observation, Raman spectroscopy, UV-Vis spectroscopy, and thermogravimetric analysis. An oxidation-time-dependent increase in oxygen content of the MWCNTs was verified by the methods of elemental analysis, mass difference calculation, and X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy, XPS, and the Boehm titration were employed to study the functionalities on the MWCNT surfaces. Despite the limitations of these techniques, the results indicated that the dramatic increase in carboxyl groups was mainly responsible for the significant increase in oxygen content after the oxidation. The dissociation of the grafted functional groups increased electronegativity of the o-MWCNTs and facilitated the aqueous stabilization of o-MWCNTs through electrostatic repulsions. The oxidation affected the UV-Vis absorbance of MWCNT suspensions. The absorbances at 800 nm of the stabilized MWCNT suspensions had a good correlation with the MWCNT concentrations and could be used to quantify the MWCNT suspensions. The findings of this work are expected to boost the research on carbon nanotubes and their environmental behaviors.  相似文献   

14.
Carbon nanotubes (CNTs) possessing unique structure and properties are attractive building blocks for novel materials and devices of important practical interest. However, the insolubility or poor dispersibility of pristine CNTs in common solvents poses a serious obstacle to their further development. To effectively utilize CNTs as building blocks for nanotechnology, CNTs have been covalently and noncovalently functionalized in a number of ways to render them soluble in aqueous or organic solutions. Here, we review recent progress and advances that have been made on dispersion of carbon nanotubes in aqueous and organic media by non‐covalent functionalization with surfactants and polymers.  相似文献   

15.
An electrochemical method for dispersion of single-walled carbon nanotubes (SWNTs) is described. The technique is based on grafting of oxygen-containing functional groups to the nanotube surface during electrolysis in aqueous and nonaqueous potassium bromide solutions. A dependence of the degree of functionalization of nanotubes on the solvent was revealed experimentally. Nanotubes treated in DMSO have about 14 carbon atoms per oxygen atom from functional groups (cf. nearly four C atoms per oxygen atom in the nanotubes treated in aqueous solutions). The corresponding maximum specific capacities of the electrodes are nearly 10 and 60 F g−1. The samples treated in solutions of KBr in DMSO have about 300 carbon atoms per bromine atom on the nanotube surface (cf. only 30 carbon atoms in the samples treated in aqueous solution). A mechanism of electrochemical modification of SWNTs is proposed. Its key step is production of atomic oxygen that oxidizes the nanotube surface with the formation of functional groups.  相似文献   

16.
Plasma chemically modified carbon nanofibers were characterized by X-ray photoelectron spectroscopy with regard to the content of carbon, oxygen, and nitrogen and the contribution of carboxylic groups or ester, carbonyl and hydroxylic groups or ether on the surface. Unfortunately, X-ray photoelectron spectroscopy only provides an average value of the first 10 to 15 molecular layers. For comparison, depth profiles were measured and wet chemical methods were applied to estimate the thickness of the functionalized layer and the distribution of oxygen-containing functional groups within the near-surface layers. The results indicate that the fiber surface is covered by a monomolecular oxygen-containing layer and that plasma treatment allows a complete oxygen functionalization of the uppermost surface layer. The best conditions for plasma treatment found within the set of parameters applied to generate complete functionalization are: plasma gas O(2)/Ar ratio 1:1, gas pressure 1-1.5 hPa, plasma power 80 W, treatment time >or= 5 min. Additionally, three quick and easy methods are presented to estimate the efficiency of plasma treatment with regard to surface functionalization: pyrolysis, contact angle measurements, and light permeability measurements of aqueous carbon nanofiber suspensions.  相似文献   

17.
Free radicals generated by decomposition of benzoyl peroxide in the presence of alkyl iodides have been used to derivatize small-diameter single-wall carbon nanotubes (HiPco tubes). The degree of functionalization, estimated by thermal gravimetric analysis, is as high as 1 in approximately 5 carbons in the nanotube framework. The derivatized nanotubes exhibits remarkably improved solubility in organic solvents. The attached groups can be removed by heating in an atmosphere of argon. Derivatization was also accomplished by treating SWNTs with various sulfoxides employing Fenton's reagent. [reaction: see text]  相似文献   

18.
功能化碳纳米管的电磁性能研究及进展   总被引:3,自引:0,他引:3  
碳纳米管是最近发展起来的一种结构独特,性能优异的新材料,已成为当今物理、化学、材料等领域共同关注的课题.而碳纳米管的功能化更是为我们开辟了一个广阔的研究领域.本文总结了近十多年来功能化碳纳米管的研究进展,并侧重对功能化碳管的合成方法及电磁特性以及应用进行了评述.  相似文献   

19.
Experiments have been performed to determine the effect of water on dilute suspensions of CrO2 in tetrahydrofuran (THF). The effect of water in the solvent as well as on the particle surface has been investigated using electrokinetic and dispersion stability measurements. Results of these investigations have shown that the zeta potential of dried CrO2 (physisorbed water removed) in THF is positive and is dependent on the water content in THF. The zeta potential exhibits a maximum at about 1,800 ppm water. Good correlation also exists between the electrokinetic and dispersion stability measurements.  相似文献   

20.
Microwave-assisted functionalization of single-wall carbon nanotubes (SWNTs) in a mixture of nitric and sulfuric acids was carried out to synthesize highly water-dispersible nanotubes. Stable concentrations as high as 10 mg/mL were obtained in deionized water that are nearly 2 orders of magnitude higher than those previously reported. This was after only 3 min of functionalization reaction. Fourier transform infrared spectra showed the presence of carboxylated (-COOH) and acid sulfonated (-SO(2).OH or -SO(3)(-) H(+)) groups on the SWNTs. On the basis of elemental analysis, it was estimated that one out of three carbon atoms was carboxylated, while one out of 10 carbon atoms was sulfonated. The Raman spectra taken both in aqueous dispersion and in the solid phase indicated charge transfer from the SWNT backbone to the functional groups. Scanning electron microscope images of thin films deposited from an aqueous suspension showed that the SWNTs were aligned parallel to one another on the substrate. The images also indicated some reduction in average length of the nanotubes. Transmission electron microscope images of thin films from a dilute methanol dispersion showed that the SWNTs were extensively debundled. Laser light scattering particle size measurements did not show evidence for the existence of particles in the 3-800 nm size range, indicating that the functionalized SWNTs might have dispersed to have formed a true solution. Moreover, the microwave-processed SWNTs were found to contain significantly smaller amounts of the original iron catalyst relative to that present in the starting nanotubes. The electrical conductivity of a thermally annealed thin membrane obtained from the microwave-functionalized SWNTs was found to be the same as that of a similar membrane obtained from a suspension of the starting nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号