首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
We present an accurate and efficient generalized pseudospectral method for solving the time-dependent Schrodinger equation for atomic systems interacting with intense laser fields. In this method, the time propagation of the wave function is calculated using the well-known second-order split-operator method implemented by the numerically exact, fast transform between the grid and spectral representations. In the grid representation, the radial coordinate is discretized using the Coulomb wave discrete variable representation (CWDVR), and the angular dependence of the wave function is expanded in the Gauss-Legendre-Fourier grid. In the spectral representation, the wave function is expanded in terms of the eigenfunctions of the field-free zero-order Hamiltonian. Calculations on the high order harmonic generation and ionization dynamics of hydrogen atom in strong laser pulses are presented to demonstrate the accuracy and efficiency of the present method. This new algorithm will be found more computationally attractive than the close-coupled wave packet method using CWDVR and/or methods based on evenly spaced grids.  相似文献   

2.
We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a sub- wavelength structure, which is described by the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses.  相似文献   

3.
张常哲  郑斌  王军  孟庆田 《中国物理 B》2013,22(2):23401-023401
We investigate the two-step association process of NaCs using the time-dependent wave packet method.Ground state atoms can be photoassociated to the low vibrational levels of the ground state for an NaCs molecule by the two-step association.The time-dependent Schro¨dinger equation of the association process is solved within a three-state model and the wave packet is propagated with the "split operator-Fourier transform" scheme and the rotating-wave approximation(RWA).The vibrational population distribution of the ground state can be obtained by projecting the wave packet to every vibrational level of the ground state.The results not only show that for NaCs achievement of photoassociation production is accompanied by the photodissociation of the higher vibrational molecules,but also show that the vibrational distribution in lower vibrational levels of the ground state changes with the laser parameters.  相似文献   

4.
韩永昌  胡文辉  于杰  丛书林 《中国物理 B》2009,18(11):4834-4839
The interference between two dissociating wave packets of the I2 molecule driven by femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method.Both the internuclear distanceand velocity-dependent density functions are calculated and discussed.It is demonstrated that the interference pattern is determined by the phase difference and the delay time between two pump pulses.With two identical pulses with a delay time of 305 fs and a FWHM of 20 fs,more interference fringes can be observed,while with two pump pulses with a delay time of 80 fs and a FWHM of 20 fs,only a few interference fringes can be observed.  相似文献   

5.
We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method.Simulation results have shown that source imperfection,especially beam spread, plays an important role in broadening the feature width,and the focus depth of atom lens for real atomic source is longer than that for perfect source.The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.  相似文献   

6.
In this work, we study damped ion acoustic solitary wave structures in magnetized dense plasmas. The collisional effects of ions with electrons and neutrals are considered. The trapping effects of electrons and Landau quantization are included in the plasma model under consideration. We assume that magnetic field is quantized such that the condition■ is satisfied. We have derived the damped Korteweg–de Vries(dKdV) equation by using small amplitude reductive perturbation technique. The time-dependent analytical and numerical solutions of the dKdV equation are presented. For numerical solutions we apply a two level finite difference scheme with the help of the Runge Kutta method. The effects of variations of different plasma parameters on the propagation characteristics of damped solitary structures in the presence of collisions are discussed.  相似文献   

7.
Terahertz(THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional(1D) time-dependent Schr ¨odinger equation. The THz spectra we obtained include both discontinuous and continuum ones. By using the special basis functions that we previously proposed, our analysis points out that the discontinuous and continuum parts are contributed by bound–bound and continuum–continuum transition of atomic energy levels. Although the atomic wave function is strongly dressed during the interaction with laser fields, our identification for the discontinuous part of the THz wave shows that the transition between highly excited bound states can still be well described by the field-free basis function in the tunneling ionization regime.  相似文献   

8.
We propose a scheme that excites rogue waves via electromagnetically induced transparency(EIT), which can also excite breathers and solitons. The system is a resonant Λ-type atomic ensemble. Under EIT conditions, the envelope equation of the probe field can be reduced to several different models, such as the saturable nonlinear Schr?dinger equation(SNLSE), and SNLSE with the trapping potential provided by a far-detuned laser field or a magnetic field. In this scheme, rogue waves can be generated by different initial pulses, such as the Gaussian wave with(or without) the uniform background. The scheme can be used to obtain rogue waves,breathers and solitons. We show the existence regions of rogue waves, breathers, and solitons as the function of the amplitude and width of the initial pulse. The novelty of our paper is that, we not only show rogue waves in the integrable system numerically, but also present the method to generate and control rogue waves in the non-integrable system.  相似文献   

9.
《中国物理 B》2021,30(9):94209-094209
We perform a theoretical study on dynamic interference in single photon ionization of ground state hydrogen atoms in the presence of a super-intense ultra-fast chirped laser pulse of different chirp types(equal-power and equal-FWHM laser pulses) by numerically solving the time-dependent Schr ¨odinger equation in one dimension. We investigate the influences of peak intensity and chirp parameters on the instantaneous ionization rate and photoelectron yield, respectively. We also compare the photoelectron energy spectra for the ionization by the laser pulses with different chirp types. We find that the difference between the instantaneous ionization rates for the ionization of hydrogen atom driven by two different chirped laser pulses is originated from the difference in variation of vector potentials with time.  相似文献   

10.
The aim of the present paper is to present a numerical algorithm for the time-dependent generalized regularized long wave equation with boundary conditions. We semi-discretize the continuous problem by means of the Crank–Nicolson finite difference method in the temporal direction and exponential B-spline collocation method in the spatial direction. The method is shown to be unconditionally stable. It is shown that the method is convergent with an order of O(k2+ h2).Our scheme leads to a tri-diagonal nonlinear system. This new method has lower computational cost in comparison to the Sinc-collocation method. Finally, numerical examples demonstrate the stability and accuracy of this method.  相似文献   

11.
We present an accurate and efficient generalized pseudospectral method for solving the time-dependent Schrödinger equation for atomic systems interacting with intense laser fields. In this method, the time propagation of the wave function is calculated using the well-known second-order split-operator method implemented by the numerically exact, fast transform between the grid and spectral representations. In the grid representation, the radial coordinate is discretized using the Coulomb wave discrete variable representation (CWDVR), and the angular dependence of the wave function is expanded in the Gauss-Legendre-Fourier grid. In the spectral representation, the wave function is expanded in terms of the eigenfunctions of the field-free zero-order Hamiltonian. Calculations on the high order harmonic generation and ionization dynamics of hydrogen atom in strong laser pulses are presented to demonstrate the accuracy and efficiency of the present method. This new algorithm will be found more computationally attractive than the close-coupled wave packet method using CWDVR and/or methods based on evenly spaced grids.  相似文献   

12.
We discuss an implementation of the self-interaction correction for the local-density approximation to time-dependent density-functional theory. A variational formulation is given, taking care of the necessary constraints. A manageable and transparent propagation scheme using two sets of wave functions is proposed and applied to laser excitation with subsequent ionization of a dimer molecule.  相似文献   

13.
《Physics letters. A》2004,328(1):36-46
A multiresolution symplectic scheme (MSS) based on second-generation wavelets (SGWs) and a Hamiltonian formulation, so-called MSS-S, is proposed to simulate wave propagation (WP). The problem is solved in multiresolution symplectic geometry space under the conservative Hamiltonian rather than the traditional Lagrange approach. Due to the fascinating properties of the SGWs and the symplectic scheme, MSS-S proves to be a promising method, with advantages of small computational burden, robustness and facility of long time simulation.  相似文献   

14.
《Physics letters. A》2020,384(21):126530
We construct a time-dependent double well potential as an exact spectral equivalent to the explicitly time-dependent negative quartic oscillator with a time-dependent mass term. Defining the unstable anharmonic oscillator Hamiltonian on a contour in the lower-half complex plane, the resulting time-dependent non-Hermitian Hamiltonian is first mapped by an exact solution of the time-dependent Dyson equation to a time-dependent Hermitian Hamiltonian defined on the real axis. When unitary transformed, scaled and Fourier transformed we obtain a time-dependent double well potential bounded from below. All transformations are carried out non-perturbatively so that all Hamiltonians in this process are spectrally exactly equivalent in the sense that they have identical instantaneous energy eigenvalue spectra.  相似文献   

15.
发展了一套高精度、高效率的伪谱方法,以非微扰的方式求解真实原子三维含时Schrodinger方程.该方法选用二阶劈裂算符作为时间演化算子,分别选择能谱表象和坐标表象作为含时波函数演化的两个表象.在坐标表象下波函数的径向部分使用库仑波函数离散变量表象来离散;角向波函数展开在两维的Gauss-Legendre-Fourier格点上.以H原子的光激发和光电离过程为例,进行了数值计算并和解析解进行了比对.结果表明二者符合很好.该方法很好地处理了库仑奇点问题.还计算了强激光辐照H原子的多光子电离过程,并和其他的数值方案进行了比较.结果表明,在计算收敛的前提下本方法计算效率更高.
Abstract:
We present an accurate and effective pseudospectral method for solving the three-dimensional time-dependent Schrodinger equation involving the Coulomb potential. In this method, the Hamiltonian is evaluated by exploiting the two representations of the wave function. One is a grid representation, in which the angular dependence of the wave function is expanded in a two-dimensional Gauss-Legendre-Fourier grid in the coordinate space of polar and azimuthal angles. The radial coordinate is discretized using a discrete variable representation constructed from the Coulomb wave function (CWDVR) . The other is a spectral representation, in which the wave function is expanded in a set of square integrable functions chosen as the eigenfunctions of a zero-order Hamiltonian. The time of propagation of the wave function is calculated using the well-known second-order split-operator method implemented through the transform between the grid and spectral representations. Calculations on the photo-absorption strength of hydrogen atom are presented to demonstrate the accuracy of present method in low energy limit by the time-dependent wave-packet propagation method. As another example, the present method is applied to multiphoton ionization of H atom. For a wide range of field parameters, ionization rates calculated using the present method are in excellent agreement with those from other accurate numerical calculations. The new algorithm will be found more efficient than the close coupled wave packet method using CWDVR and/or methods based on evenly spaced grids.  相似文献   

16.
17.
陈增军  宁西京 《物理学报》2003,52(11):2683-2686
分析了一个脉冲激光与原子相互作用的四能级系统,并考虑最上层能级的自电离过程,从而引入非厄米哈密顿量.在缀饰原子模型下,通过直接求解此哈密顿量的本征值与本征函数,得到系统布居的演化函数.与数值方法所得演化函数的对比表明二者相当符合,从而肯定了非厄米哈密顿量在量子力学框架中的地位,并得到其本征值虚部的物理意义.这将使传统量子力学中力学量的定义得以拓展. 关键词: 非厄米哈密顿量 缀饰原子模型  相似文献   

18.
In this paper we performed the experimental and numerical study of a passively mode-locked fiber laser that generates packets of sub-picosecond pulses instead of individual pulses. The proposed configuration is a figure-eight fiber laser scheme, which includes a Nonlinear Optical Loop Mirror with polarization asymmetry inserted into a ring cavity. No experimental evidence of self-starting mode locking operation of the laser was observed; however, for proper adjustments of the wave retarders included in the setup, a mechanical stimulation triggers the onset of mode locking. The autocorrelation of the generated pulses shows a narrow sub-picosecond peak riding a large sub-nanosecond pedestal whose intensity is half that of the peak, and the optical spectrum is smooth and wide. We show that contrary to conventional ultrashort pulses, these pulses do not vanish rapidly after propagation through a long dispersive fiber, which makes then attractive for super-continuum generation as well as for applications in metrology. Finally, we study the pulse formation in the laser and present arguments based on experimental data and numerical simulations that the observed pulses are actually sets of a large number of solitons.  相似文献   

19.
For a large class of time-dependent non-Hermitian Hamiltonians expressed in terms linear and bilinear combinations of the generators for an Euclidean Lie-algebra respecting different types of PT-symmetries, we find explicit solutions to the time-dependent Dyson equation. A specific Hermitian model with explicit time-dependence is analyzed further and shown to be quasi-exactly solvable. Technically we constructed the Lewis–Riesenfeld invariants making use of the metric picture, which is an equivalent alternative to the Schrödinger, Heisenberg and interaction picture containing the time-dependence in the metric operator that relates the time-dependent Hermitian Hamiltonian to a static non-Hermitian Hamiltonian.  相似文献   

20.
曾思良  邹士阳  王建国  颜君 《物理学报》2009,58(12):8180-8187
发展了一套高精度、高效率的伪谱方法,以非微扰的方式求解真实原子三维含时Schrdinger方程.该方法选用二阶劈裂算符作为时间演化算子,分别选择能谱表象和坐标表象作为含时波函数演化的两个表象.在坐标表象下波函数的径向部分使用库仑波函数离散变量表象来离散;角向波函数展开在两维的Gauss-Legendre-Fourier格点上.以H原子的光激发和光电离过程为例,进行了数值计算并和解析解进行了比对.结果表明二者符合很好.该方法很好地处理了库仑奇点问题.还计算了强激光辐照H原子的多光子电离过程,并和其他的数值方案进行了比较.结果表明,在计算收敛的前提下本方法计算效率更高. 关键词: 三维含时Schrdinger方程 库仑奇点 强场 含时波包传播  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号