首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
剧变截面圆管内渗流的数值计算方法   总被引:1,自引:0,他引:1  
对于剧变截面圆管的渗流问题写出不可压缩渗流的基本方程组,对直接求解原始变量(速度和压力)的数值计算方法作出改进。先由非主流方向的运动方程计算压力,后由主流方向的运动方程计算主流方向的速度分量,再由连续性方程计算非主流方向的速度分量。这样可以避免在一般的求解原始变量方法中由连续性方程计算压力时出现的困难和麻烦。根据本方法和剧变截面圆管的特点,采用半交错不等距非正交贴体混合网格系。本文详细写出差分方程和迭代计算公式,对剧变截面圆管内的渗流算例进行数值计算。本方法的优点是简单和实用,在工程上具有较大的应用价值。  相似文献   

2.
采用两相流混合模型,并选取RNG k-ε湍流模型封闭两相流时均方程,对梯型断面明渠非淹没式丁坝绕流水力特性进行了三维数值模拟。采用有限体积法离散计算区域,求解速度与压力耦合方程组时使用半隐式SIMPLE(Semi-Implicit Method for Pressure-Linked Equations)算法,模拟自由水面时采用了VOF(Volume of Fluid)法。对丁坝后不同的回流长度进行了分析比较,并将模拟结果与实测资料进行了对比验证,结果表明两者吻合较好,相对误差小于8%,说明该模型能够很好地模拟明渠丁坝绕流的水力特性分布规律。  相似文献   

3.
文中将基于离散应力、速度混合变量弹性波方程的各种数值解法统称为混合差分法,该文研究这类解法中人工边界的透射边界条件。基于波动沿边界法向传播的特征量分析,给出了横观各向同性介质中复杂形状边界的透射条件。该文是一种局部透射条件,所需计算量极小。文中将此方法与交错网格差分解法结合并应用于横观各向同性介质弹性波计算。数值算例及反射系数分析表明,该方法很好地消除了人工边界对来波的反射。  相似文献   

4.
提出了一种改进的分块隐式数值方法,在贴体坐标和交错网格下以逆变速度分量和压力U,V,W,p为基本求解变量,由此克服了原分块隐式数值方法求解复杂边界流动时的困难.90°弯管流动数值计算初步表明,本文提出的方法合理、可行  相似文献   

5.
朱祚金 《力学学报》2002,34(3):425-431
通过用时间分裂算法求解Navier-Stokes方程,对中等Reynolds数下靠近排列的两个交错方柱三维绕流进行了数值模拟,其中,中间速度场用四阶Adams格式计算,压力场通过结合近似因子分解方法AF1与稳定的双共轭梯度方法Bi-CGSTAB进行迭代求解.数值模拟发现当两个方柱靠得较近时,有互相吸引趋势,而且上游方柱的Strouhal数较大.方柱的交错排列方式对绕流影响明显.计算结果与实验定性吻合,而且比用MAC-AF1方法计算的结果好.  相似文献   

6.
提出了求解多维双曲守恒律方程组的四阶半离散格式。该方法以中心加权基本无振荡(CWENO)重构为基础,同时考虑到在R iemann扇内波传播的局部速度,从而回避了计算过程中的网格交错,建立了数值耗散较小的介于迎风格式和中心格式之间的半离散格式。本文的四阶半离散格式是Kurganov等人的三阶半离散格式的高阶推广。大量的数值算例充分说明了本文方法的高分辨率和稳定性。  相似文献   

7.
采用非线性K-ε湍流模式数值模拟三角形通道棒束中的二次流动,并考察其对流动和传热的影响。数值方法采用非正交曲线坐标系下求解控制方程的非交错网格方法。计算结果表明该模式能够较为有效地反映棒束中的二次流动,进一步分析表明二次流动有利于改善棒束中的流动和传热特性。  相似文献   

8.
浸入边界法通过在N-S方程中施加体积力模拟不可滑移固壁边界及动边界,避免生成复杂贴体网格及动网格,极大地节省了网格建模时间及动网格计算消耗。本文提出一种新型附加体积力简化计算方法,将简化附加体积力以源项形式嵌入动量方程迭代中,通过用户自定义函数对CFD软件FLUENT二次开发,实现了浸入边界法和通用流体力学求解器的耦合计算。通过静止圆柱和动圆柱绕流数值模拟进行了验证,并探讨了插值函数对计算精度的影响。研究表明,通过引入浸入边界模型,能够提高计算效率,并实现结构网格背景下复杂边界和动边界的高效建模。  相似文献   

9.
从一般非线性Bo ltzm ann方程出发,发展并实现了一套适于大范围K nudsen数稀薄流问题数值模拟的统一算法。采用BGK模型和Shakov模型近似碰撞项,进而引入两个二速度无量纲简化分布函数,通过关于分子速度第三分量取矩积分,将三速度单一模型方程变换为二速度微分方程组。基于G auss-H erm ite积分公式和正交多项式G auss积分公式,借助离散速度坐标法消除简化模型方程对分子速度空间的连续依赖性,从相空间到物理空间得到一组带源项双曲守恒离散方程,并给出其显式和隐式二阶迎风TVD有限差分解。以二维圆柱A r气体超声速绕流算例,验证了数值算法的有效性,比较分析了漫反射和镜面反射两种气体分子壁面反射模型的计算结果。  相似文献   

10.
本文用有限差分法计算混流式可逆水力机械水泵工况叶片表面的三维边界层。水泵叶轮中主流区的三维势流由直接边界元法计算。对于叶片面附近的粘性流动。用三维半正交坐标系中的边界层方程表示。为了提高计算精度采用贴体坐标技术生成边界层区域的计算网格。并利用Cebeci等变换函数及Keller差分格式离散方程。用分块解法求解。计算叶轮叶片表面的压力分布与相应试验结果进行了对比。  相似文献   

11.
In this paper, we describe a new method for the three‐dimensional steady incompressible Navier–Stokes equations, which is called the dimension split method (DSM). The basic idea of DSM is that the three‐dimensional space is split up into a cluster of two‐dimensional manifolds and then the three‐dimensional solution is approximated by the solutions on these two‐dimensional manifolds. Through introducing some technologies, such as SUPG stabilization, multigrid method, and such, we firstly make DSM feasible in the computation of real flow. Because of split property of DSM, all computation is carried out on these two‐dimensional manifolds, namely, a series of two‐dimensional problems only need to be solved in the computation of three‐dimensional problem, which greatly reduces the difficulty and the computational cost in the mesh generation. Moreover, these two‐dimensional problems can be computed simultaneously and a coarse‐grained parallel algorithm would be constructed, whereas the two‐dimensional manifold is considered as the computation unit. In the last, we explore the behavior and the accuracy of the proposed method in two numerical examples. Firstly, error estimates, performance of multigrid method, and parallel algorithm are well‐demonstrated by the known analytical solution case. Secondly, the computations of three‐dimensional lid‐driven cavity flows with different Reynolds numbers are compared with other numerical simulations. Results show that the present implementation is able to exhibit good stability and accuracy properties for real flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
二维定常不可压缩粘性流动N-S方程的数值流形方法   总被引:4,自引:4,他引:0  
将流形方法应用于定常不可压缩粘性流动N-S方程的直接数值求解,建立基于Galerkin加权余量法的N-S方程数值流形格式,有限覆盖系统采用混合覆盖形式,即速度分量取1阶和压力取0阶多项式覆盖函数,非线性流形方程组采用直接线性化交替迭代方法和Nowton-Raphson迭代方法进行求解.将混合覆盖的四节点矩形流形单元用于阶梯流和方腔驱动流动的数值算例,以较少单元获得的数值解与经典数值解十分吻合.数值实验证明,流形方法是求解定常不可压缩粘性流动N-S方程有效的高精度数值方法.  相似文献   

13.
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such oscillations. Computational results presented for several viscous flows are shown to be in good agreement with analytical and experimental data reported in the open literature.  相似文献   

14.
Liquid mixing is an important component of many microfluidic concepts and devices, and computational fluid dynamics (CFD) is playing a key role in their development and optimization. Because liquid mass diffusivities can be quite small, CFD simulation of liquid micromixing can over predict the degree of mixing unless numerical (or false) diffusion is properly controlled. Unfortunately, the false diffusion behavior of higher‐order finite volume schemes, which are often used for such simulations, is not well understood, especially on unstructured meshes. To examine and quantify the amount of false diffusion associated with the often recommended and versatile second‐order upwind method, a series of numerical simulations was conducted using a standardized two‐dimensional test problem on both structured and unstructured meshes. This enabled quantification of an ‘effective’ false diffusion coefficient (Dfalse) for the method as a function of mesh spacing. Based on the results of these simulations, expressions were developed for estimating the spacing required to reduce Dfalse to some desired (low) level. These expressions, together with additional insights from the standardized test problem and findings from other researchers, were then incorporated into a procedure for managing false diffusion when simulating steady, liquid micromixing. To demonstrate its utility, the procedure was applied to simulate flow and mixing within a representative micromixer geometry using both unstructured (triangular) and structured meshes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an integral vorticity method for solving three‐dimensional Navier–Stokes equations. A finite volume scheme is implemented to solve the vorticity transport equation, which is discretized on a structured hexahedral mesh. A vortex sheet algorithm is used to enforce the no‐slip boundary condition through a vorticity flux at the boundary. The Biot–Savart integral is evaluated to compute the velocity field, in conjunction with a fast algorithm based on multipole expansion. This method is applied to the simulation of uniform flow past a sphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new set of boundary‐domain integral equations is derived from the continuity and momentum equations for three‐dimensional viscous flows. The primary variables involved in these integral equations are velocity, traction, and pressure. The final system of equations entering the iteration procedure only involves velocities and tractions as unknowns. In the use of the continuity equation, a complex‐variable technique is used to compute the divergence of velocity for internal points, while the traction‐recovery method is adopted for boundary points. Although the derived equations are valid for steady, unsteady, compressible, and incompressible problems, the numerical implementation is only focused on steady incompressible flows. Two commonly cited numerical examples and one practical pipe flow problem are presented to validate the derived equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the cell‐based smoothed finite element method (CS‐FEM) with the semi‐implicit characteristic‐based split (CBS) scheme (CBS/CS‐FEM) is proposed for computational fluid dynamics. The 3‐node triangular (T3) element and 4‐node quadrilateral (Q4) element are used for present CBS/CS‐FEM for two‐dimensional flows. The 8‐node hexahedral element (H8) is used for three‐dimensional flows. Two types of CS‐FEM are implemented in this paper. One is standard CS‐FEM with quadrilateral gradient smoothing cells for Q4 element and hexahedron cells for H8 element. Another is called as n‐sided CS‐FEM (nCS‐FEM) whose gradient smoothing cells are triangles for Q4 element and pyramids for H8 element. To verify the proposed methods, benchmarking problems are tested for two‐dimensional and three‐dimensional flows. The benchmarks show that CBS/CS‐FEM and CBS/nCS‐FEM are capable to solve incompressible laminar flow and can produce reliable results for both steady and unsteady flows. The proposed CBS/CS‐FEM method has merits on better robustness against distorted mesh with only slight more computation time and without losing accuracy, which is important for problems with heavy mesh distortion. The blood flow in carotid bifurcation is also simulated to show capabilities of proposed methods for realistic and complicated flow problems.  相似文献   

19.
采用NND方法计算三维喷管气流场   总被引:1,自引:0,他引:1  
本文运用NND显式差分格式,计算了三维喷管气流场。气流场计算的基本方程为一般贴体坐标系下三维守恒型的欧拉方程。采用了时间分裂法和Steger-Warming矢通量分裂技术。在喷管内沿周向的每个由轴线和壁面构成的子午面上根据泊松方程生成贴体网格。本文运用三维程序计算了轴对称JPL喷管,同时与实验结果和前人采用轴对称二维程序所计算的结果做了对比。最后,本文还计算了三维矢量喷管,计算结果与现有的实验结果一致。通过轴对称JPL喷管和三维矢量喷管的计算考核,表明建立的算法和编写的计算程序是正确的。文中提出了采用子午面形式的贴体网格时奇性轴的处理方法。计算结果表明在喷管壁面处,马赫数与压强的计算结果与实验值吻合较好,而在喷管轴线处,只有当网格较密时,才能得出与实验结果接近的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号