首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

2.
CaCu3Ti4O12 ceramics were prepared at the sintering temperatures ranged from 1025 to 1125 °C, and the dielectric characteristics were evaluated together with the microstructures. The giant dielectric constant with the maximum of 53,120 was obtained in CaCu3Ti4O12 ceramics at room temperature and 10 kHz, and strong processing and microstructure dependence of dielectric characteristics of the present ceramics was determined. The precipitation of the dispersed Cu-rich secondary phases of CuO and/or Cu2O and their network structure provided the extrinsic origins of the enhanced giant dielectric response, and the present findings would offer the greater potential for enhancing the giant dielectric constant and controlling the dielectric loss in CaCu3Ti4O12 ceramics by optimizing the microstructures.  相似文献   

3.
Single phase ceramics CaCu3Ti4.0O12 and CaCu3Ti3.9O12 have been prepared using the traditional solid-state reaction method. Compared with the stoichiometric ceramics CaCu3Ti4.0O12, Ti-deficient ceramics CaCu3Ti3.9O12 have the larger lattice parameter, the higher force constant, and smaller dielectric constant and the lower dissipation factor, although their fundamental characters of dielectric response are similar. Their characteristic relaxation frequencies are not well fitted with the Arrhenius Law but a tentatively supposed relation. With the Cole-Cole Law, the fitted broadened factors of dissipation peaks are 0.5433 and 0.8651 for CaCu3Ti3.9O12 and CaCu3Ti4.0O12, respectively. All facts mentioned above imply that mutually correlated motion of Ti ions or defects may be expected to be responsible for the giant dielectric constant and high dissipation factor of CaCu3Ti4.0O12.  相似文献   

4.
Effect of La3+ doping at Ca2+ site in CaCu3Ti4O12 has been examined. Compositions with x=0.10, 0.20 and 0.30 were synthesized in the system Ca(1−3x/2)LaxCu3Ti4O12 by semi-wet method. Powder X-ray diffraction confirmed the formation of monophasic compounds. The structure remains cubic similar to CaCu3Ti4O12. Lattice parameter increases slightly with increasing La3+ concentration. Microstructure has been studied using scanning electron microscopy (SEM). Average grain size is in the range 2-4 μm for various compositions. Energy-dispersive spectrometer (EDS) studies confirm the stoichiometry of the synthesized materials. Dielectric constant, dielectric loss and conductivity of the samples decrease with increasing lanthanum concentrations.  相似文献   

5.
Although CdCu3Ti4O12 is isostructural to CaCu3Ti4O12, the room temperature low-frequency dielectric constant of the former compound was reported to be ∼400, only 1/25 of that of the latter material [M.A. Subramanian, et al., J. Solid State Chem. 151 (2000) 323]. In this communication, we report that the dielectric constant of CdCu3Ti4O12 can be remarkably increased by elevating the sintering temperature. The room temperature dielectric constant at 100 kHz achieves 9000, almost as much as that of CaCu3Ti4O12, for the sample sintered at 1283 K. The appearance of giant dielectric constant in CdCu3Ti4O12 is explained in terms of internal barrier layer capacitance (IBLC) effect with the subgrain boundary as the barrier. Our result supplies an approach in searching for new giant-dielectric-constant materials in the CaCu3Ti4O12 family.  相似文献   

6.
A 10 mm thickness columned CaCu3Ti4O12 ceramic was fabricated by the conventional solid-state reaction method and the dielectric properties of different parts in ceramic had been investigated. For the sample close to the surface, only one Debye-type relaxation around 107 Hz was observed at room temperature. However, for the sample close to the core, another relaxation peak was observed at about 104 Hz. The results were explained in terms of the equivalent circuit model by showing in the impedance spectroscopy. Moreover, it was introduced that the low-frequency dielectric relaxation is associated with the electrode-sample contact effect based on varying sample thickness and an annealing treatment in the nitrogen atmospheres.  相似文献   

7.
A method of preparing the nanoparticles of CaCu3Ti4O12 (CCTO) with the crystallite size varying from 30 to 200 nm is optimized at a temperature as low as 680 °C from the exothermic thermal decomposition of an oxalate precursor, CaCu3(TiO)4(C2O4)8·9H2O. The phase singularity of the complex oxalate precursor is confirmed by the wet chemical analyses, X-ray diffraction, FT-IR and TGA/DTA analyses. The UV-vis reflectance and ESR spectra of CCTO powders indicate that the Cu(II) coordination changes from distorted octahedra to nearly flattened tetrahedra (squashed) to square-planar geometry with increasing annealing temperature. The HRTEM images have revealed that the evolution of the microstructure in nanoscale is related to the change in Cu(II) coordination around the surface regions for the chemically prepared powder specimens. The nearly flattened tetrahedral geometry prevails for CuO4 in the near surface regions of the particles, whereas square-planar CuO4 groups are dominant in the interior regions of the nanoparticles. The powders derived from the oxalate precursor have excellent sinterability, resulting in high-density ceramics which exhibited giant dielectric constants upto 40,000 (1 kHz) at 25 °C, accompanied by low dielectric loss <0.07.  相似文献   

8.
Magnetic and transport properties of double distorted perovskites CaCuMn6O12 and CaCu2Mn5O12 are studied in a range 2–300 K. The leading role in magnetism of these compounds belongs to antiferromagnetic exchange interaction of Cu2+ in square coordination with Mn3+/Mn4+ in octahedral coordination. The values of saturation magnetization indicate that Mn3+ ions in square coordination are coupled ferromagnetically with Mn3+/Mn4+ in octahedral coordination. The colossal magnetoresistance in the pellet samples is due assumingly to intergranular spin-polarized tunneling of current carriers.  相似文献   

9.
CaCu3Ti4O12块材和薄膜的巨介电常数   总被引:4,自引:2,他引:2       下载免费PDF全文
赵彦立  焦正宽  曹光旱 《物理学报》2003,52(6):1500-1504
用固相反应法和脉冲激光沉积(PLD)制备了CaCu3Ti4O12块材和薄膜,获得了相对介电常数ε′(1kHz,300K)高于14000的介电特性,是目前该体系最好的结果.报道了(00l)取向高质量CaCu3Ti4O12外延薄膜及其介电性质.C aCu3Ti4O12相对介电常数ε′在100—300K温度范围 内 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 巨介电常数 PLD  相似文献   

10.
杨昌平  李旻奕  宋学平  肖海波  徐玲芳 《物理学报》2012,61(19):197702-197702
本文研究了在真空、空气和氧气中烧结制备的三种 CaCu3Ti4O12陶瓷材料的介电特性. 交流阻抗测量结果表明在10—300 K温度范围, 三种样品的介电温谱中均出现三个平台, 其电阻实部和电容虚部在相应温度出现损耗峰, 真空条件烧结的样品具有较高的介电平台和较明显的电阻实部与电容虚部峰值, 表明氧含量和氧空位对CaCu3Ti4O12的介电性质具有重要影响, 介电温谱出现的三个平台分别源于晶粒、晶界及氧空位陷阱.温谱分析表明晶粒的激活能与烧结气氛有较大关系,氧空位引起的电子短程跳跃及跳跃产生的极化子是晶粒电导和电容的主要起源.氧空位陷阱的激活能基本与烧结气氛无关,约为0.46 eV. 氧空位对载流子的陷阱作用是CaCu3Ti4O12 低频高介电常数的重要起源.  相似文献   

11.
慕春红  刘鹏  贺颖  张丹  孟玲  边小兵 《物理学报》2008,57(4):2432-2437
采用固相反应法制备了CaCu3Ti4-xFexO12(0≤x≤0.2)陶瓷,通过X射线衍射、扫描电子显微镜、介电频谱和阻抗谱等手段研究了Fe对CaCu3Ti4O12陶瓷的结构和介电性能的影响.研究发现:CaCu3Ti4-xFex关键词: 巨介电常数 双阻挡层电容模型 界面极化  相似文献   

12.
CaCu3Ti4O12陶瓷的介电特性与弛豫机理   总被引:2,自引:0,他引:2       下载免费PDF全文
成鹏飞  王辉  李盛涛 《物理学报》2013,62(5):57701-057701
本文采用Novocontrol宽频介电谱仪在-100 ℃–100 ℃温 度范围内、0.1 Hz–10 MHz频率范围内测量了表面层打磨前 后CaCu3Ti4O12陶瓷的介电特性, 分析了CaCu3Ti4O12陶瓷的介电弛豫机理. 首先, 基于对宏观“壳-心”结构的定量分析, 排除了巨介电常数起源于表面层效应的可能性; 其次, 基于经典Maxwell-Wagner夹层极化及其活化能物理本质的分析, 排除了巨介电常数起源于经典Maxwell-Wagner极化的可能性; 最后, 依据晶界Schottky势垒与本征点缺陷的本质联系, 提出了巨介电常数起源于Schottky势垒边界陷阱电子弛豫的新机理. 陷阱电子弛豫机理反映了CaCu3Ti4O12陶瓷本征点缺陷、 电导、介电常数之间的本质关系. 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 介电弛豫 Schottky势垒 点缺陷  相似文献   

13.
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.  相似文献   

14.
Electronic structure calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA) and GGA+U for manganite cuprate compound LuCu3Mn4O12 have been performed, using the full-potential linearized augmented plane wave method. The calculated results indicate that LuCu3Mn4O12 is ferrimagnetic and half-metallic in both GGA and GGA+U calculations. The minority-spin band gap is 0.7 eV within GGA, which is larger than that of LaCu3Mn4O12 (0.3 eV), indicating its better half-metallicity. Further, the minority-spin gap enlarges from 0.7 to 2.8 eV with U taken into account, and simultaneously the Fermi level being shifted to the middle of the gap, making the half-metallic energy gap to be 1.21 eV. These results demonstrate that electronic correlation effect enhances the stability of half-metallic property. These facts make this system interesting candidates for applications in spintronic devices.  相似文献   

15.
Electronic and magnetic properties of the three magnetic-sublattice double perovskite TbCu3Mn4O12 (TCMO) are investigated by performing first-principles density-functional theory calculations. Our electronic structure calculations show that TCMO is half-metallic and its half-metallicity can only be correctly described when the electron correlation on Tb3+ 4f8 electrons are considered. The energies of different magnetic configurations among the three magnetic sublattices are also calculated, revealing that the magnetic configuration with Mn and Cu spins in the antiparallel arrangement and with the Tb magnetic moments ferromagnetically/antiferromagnetically (FM/AFM) coupled to Cu/Mn spins (that is TbCu3Mn4O12) is the lowest energetic magnetic state, which is consistent with recent experimental results. The magnetic anisotropy is further calculated for the [1 1 1], [1 1 0], and [0 0 1] spin quantization directions. It is found that the [1 1 1]-direction is more stable than the [1 1 0]- and [0 0 1]-directions by 123 and 135 meV per formula unit, respectively, indicating a significant magnetic anisotropy. Our detailed projected partial density of states analysis finally shows that Cu and Mn are antiferromagnetically coupled by superexchange interaction and Tb is expected to interact FM with A-site Cu and AFM with B-site Mn sublattices by way of 4f-2p-3d.  相似文献   

16.
The synthesis, structural and magnetic properties of a new type high permittivity material Ca(Ti1/2Mn1/2)O3 was reported. The sample was prepared by conventional solid-state reaction route. Rietveld analysis revealed it was single perovskite with space group Pnma. Normalized bond length and bond valence were calculated to investigate the compression/dilation effects of bonds and atoms in unit cell. There were five types of Ca-O bonds and three kinds of (Ti, Mn)-O bonds in Ca(Ti1/2Mn1/2)O3. The susceptibility curve at high temperature followed the Curie-Weiss law with Curie and Weiss constant as 0.8991 emu K/mol and −276.3 K, respectively. The calculated effective moment per Mn is 2.68 μB-Bohr magneton. Antiferromagnetism and spin glass state at low temperature were found in Ca(Ti1/2Mn1/2)O3. Frustration parameter was estimated to be about 30, suggesting the cluster-spin-glass resulted from geometrical frustration.  相似文献   

17.
Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250 K, in addition to the well-investigated dielectric relaxation close to 100 K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers.  相似文献   

18.
Complex impedance spectra were obtained on a crystal of CaCu3Ti4O12 (CCTO) from 289 to 456 K. As in the case of ceramic CCTO, these spectra can be interpreted as arising from a conducting material containing insulating barriers. This is then further evidence for the existence of planar defects within crystals of CCTO that act as insulating barriers and produce the large dielectric constant through a space charge mechanism.  相似文献   

19.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

20.
吴云翼  王晓慧  李龙土 《中国物理 B》2010,19(3):37701-037701
La/Mn co-doped Bi4Ti3O12 ceramics,Bi3.25La0.75Ti3-xMnxO12(x=0.02,0.04,0.06,0.08),were prepared by the solid-state reaction method.The influence of manganese substitution for the titanium part in Bi 3.25 La 0.75 Ti 3 O 12 on the sintering behaviour,microstructure,Raman spectra and electrical properties was investigated.The experimental results show that the phase composition of all samples with and without manganese doping,sintered at 1000 ℃,consists of a single phase with a bismuth-layered structure belonging to the crystalline phase Bi4Ti3O12.There is no evidence of any impurity phase,but a small change in crystallographic orientation is observed.The Curie temperature of Bi3.25La0.75Ti3-xMnxO12 ceramics is steadily shifted to lower temperature with increasing Mn-doping content.Moreover,the remnant polarisation(Pr) of Bi3.25La0.75Ti2.92Mn0.08O12 samples increases with Mn-doping content,and the Bi3.25La0.75Ti2.92Mn0.08O12 sample exhibits the largest P r of 16.6 μC/cm 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号