首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Novel silicon-deficient mullite (Al5.65Si0.35O9.175) single crystal nanowires were synthesized in large quantities on mica substrates assisted by the intermediate fluoride species. The nanowires have diameters in the range 50-100 nm and typical lengths of several microm. Aligned nanowires were observed at the substrate edge. The nanowires have strong photoluminescence (PL) emission bands at 310, 397, 452 and 468 nm.  相似文献   

2.
利用Pd催化合成单晶GaN纳米线的光学特性(英文)   总被引:1,自引:0,他引:1  
基于金属元素钯具有的催化特性,采用射频磁控溅射方法,在Si(111)衬底上沉积Pd:Ga2O3薄膜,然后在950℃下对薄膜进行氨化,制备出大量GaN纳米线.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等技术手段对样品的结构、形貌和成分进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶GaN纳米线,直径在20-60nm范围内,长度为几十微米,表面光滑无杂质,结晶质量较高.用光致发光光谱对样品的发光特性进行测试,分别在361.1、388.6和426.3nm处出现三个发光峰,且与GaN体材料相比近带边紫外发光峰发生了较弱的蓝移.对GaN纳米线的生长机制也进行了简单的讨论.  相似文献   

3.
Large-yield and crystalline GaN nanowires have been synthesized on a Si substrate via a simple thermal evaporation process. The majority of the GaN nanowires has bicrystalline structures with a needlelike shape, a triangular prism morphology, and a uniform diameter of approximately 100 nm. Field-emission measurements show that the bicrystalline GaN nanowires with sharp tips have a lower turn-on field of approximately 7.5 V/microm and are good candidates for low-cost and large-area electron emitters. It is believed that the excellent filed emission property is attributed to the bicrystalline structure defects and sharp tips.  相似文献   

4.
《Chemical physics letters》2003,367(1-2):136-140
Single crystalline wurzite GaN nanowires were successfully synthesized on the NiO catalyzed alumina substrate through a simple thermal chemical vapor deposition method. The mixture of Ga and GaN powder was used as the source material of Ga for synthesizing GaN nanowires. The diameter of nanowires ranged 50–60 nm and the length was about hundreds of micrometers. The nanowires were single crystal with hexagonal wurzite structure. The peaks of Raman spectra of GaN nanowires appeared broadened and asymmetric compared with those of bulk GaN. PL spectra under excitation at 325 nm showed a strong emission at 3.315 eV from near band-edge transition and a broad weak emission at 2.695 eV related to deep level defects.  相似文献   

5.
GaN nanowires with P doping were synthesized via a simple thermal evaporation process. The P-doped GaN nanowires have average diameters of approximately 100 nm and lengths up to tens of micrometers. Scanning electron microscope and high-resolution field-emission transmission electron microscope analyses revealed that P doping results in a rough surface morphology of GaN nanowires. Field-emission measurements showed that P doping effectively decreases the turn-on field of GaN nanowire to 5.1 V/mum, holding promise of application as an electron emitter. The rough surface is responsible for enhancement of the field-emission properties of GaN nanowires.  相似文献   

6.
Quasi one-dimensional GaN-SiO(2) nanostructures, with a silicon oxide layer coated on semiconductor GaN nanowires, were successfully synthesized through as-synthesized SiO(2) nanoparticles-assisted reaction. The experimental results indicate that the nanostructure consists of single-crystalline wurtzite GaN nanowire core, an amorphous SiO(2) outer shell separated in the radial direction. These quasi one-dimensional nanowires have the diameters of a few tens of nanometers and lengths up to several hundreds of micrometers. The photoluminescence spectrum of the GaN-SiO(2) nanostructures consists of one broad blue-light emission peak at 480 nm and another weak UV emission peak at 345 nm. The novel method, which may results in high yield and high reproducibility, is demonstrated to be a unique technique for producing nanostructures with controlled morphology.  相似文献   

7.
A sol-gel template technique has been put forward to synthesize single-crystalline semiconductor oxide nanowires, such as n-type SnO2 and p-type NiO. Scanning electron microscopy and transmission electron microscopy observations show that the oxide nanowires are single-crystal with average diameters in the range of 100-300 nm and lengths of over 10 microm. Photoluminescence (PL) spectra show a PL emission peak at 401 nm for n-type semiconductor SnO2, and a PL emission at 407 nm for p-type semiconductor NiO nanowires, respectively. Correspondingly, the observed violet-light emission at room temperature is attributed to near-band-edge emission for SnO2 nanowires and the 3d(7)4s-->3d8 transition of Ni2+ for NiO nanowires.  相似文献   

8.
Optical phonon confinement and efficient UV emission of ZnO nanowires were investigated in use of resonant Raman scattering (RRS) and photoluminescence (PL). The high-quality ZnO nanowires with diameters of 80-100 nm and lengths of several micrometers were epitaxially grown through a simple low-pressure vapor-phase deposition method at temperature 550 degrees C on the precoated GaN(0001) buffer layer. The increasing intensity ratio of n-order longitudinal optical (LO) phonon (A(1)(nLO)/E(1)(nLO)) with increasing scattering order in RRS reveals the phonon quantum confinement as shrinking the diameter of ZnO nanowires. The exciton-related recombination near the band-edge transition dominate the UV emissions at room temperature as well as at low temperature that exhibits almost no other nonstoichiometric defects in the ZnO nanowires.  相似文献   

9.
Catalytic growth and characterization of gallium nitride nanowires.   总被引:12,自引:0,他引:12  
The preparation of high-purity and -quality gallium nitride nanowires is accomplished by a catalytic growth using gallium and ammonium. A series of catalysts and different reaction parameters were applied to systematically optimize and control the vapor-liquid-solid (VLS) growth of the nanowires. The resulting nanowires show predominantly wurtzite phase; they were up to several micrometers in length, typically with diameters of 10-50 nm. A minimum nanowire diameter of 6 nm has been achieved. Temperature dependence of photoluminescence spectra of the nanowires revealed that the emission mainly comes from wurtzite GaN with little contribution from the cubic phase. Moreover, the thermal quenching of photoluminescence was much reduced in the GaN nanowires. The Raman spectra showed five first-order phonon modes. The frequencies of these peaks were close to those of the bulk GaN, but the modes were significantly broadened, which is indicative of the phonon confinement effects associated with the nanoscale dimensions of the system. Additional Raman modes, not observed in the bulk GaN, were found in the nanowires. The field emission study showing notable emission current with low turn-on field suggests potential of the GaN nanowires in field emission applications. This work opens a wide route toward detailed studies of the fundamental properties and potential applications of semiconductor nanowires.  相似文献   

10.
In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.  相似文献   

11.
采用化学气相沉积法(CVD)在Si(100)衬底上以Ni为催化剂, 金属Ga和NH3为原料合成了GaN微纳米结构, 并研究了N2流量对产物GaN的形貌及光学和电学性能的影响。利用场发射扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、X-ray能谱仪(EDS)、光致发光谱(PL)和霍尔效应测试仪(HMS-3000)等测试手段对样品的形貌、结构、成分、光学和电学性能进行了分析。结果表明, 随着N2流量的增加, 产物GaN的形貌发生了由微米棒到蠕虫状线再到光滑纳米线的转变;生成的GaN均为六方纤锌矿结构;样品均表现出383 nm的近带边紫外发射峰和470 nm左右的蓝光发射峰;所有样品均为n型;并对产物GaN的形貌转变机理进行了分析。  相似文献   

12.
Preparation and properties of ternary ZnMgO nanowires   总被引:2,自引:0,他引:2  
Zn0.84Mg0.16O and Zn0.12Mg0.88O nanowires with different morphology have been synthesized by a catalyst-free thermal evaporation method using Zn and Mg metals as the raw materials. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and room-temperature photoluminescence (PL) measurements were used to determine the structure and optical properties of the obtained products. The obtained nanowires have diameters in a range of 30 nm-80 nm, crystallized well as hexagonal and cubic phase, with preferred orientation along the c-axis and a-axis for the two samples of Zn0.84Mg0.16O and Zn0.12Mg0.88O, respectively. Room-temperature PL at wavelengths of 384.4 and 495.8 nm has been observed for the sample of Zn0.84Mg0.16O. Upon annealing in Ar ambient, the emission peaks in PL spectra show a clearly blue shift.  相似文献   

13.
A simple one-step hydrothermal method for large-scale synthesis of ultralong single-crystalline Bi2S3 nanowires was reported, and the nanowires were comprehensively characterized. The diameters of the nanowires are about 60 nm, and their lengths range from tens of microns to several millimeters. The structure of the nanowires was determined to be of the orthorhombic phase, the growth direction was along [001], and the growth mechanism was investigated based on extensive high-resolution transmission electron microscopy observations. Optical absorption experiments revealed that the Bi2S3 nanowires are narrow-band semiconductors with a band gap E(g) approximately 1.33 eV. Electrical transport measurements on individual nanowires gave a resistivity of about 1.2 ohms cm and an emission current of 3.5 microA at a bias field of 35 V/microm. This current corresponds to a current density of about 10(5) A/cm2, which makes the Bi2S3 nanowire a potential candidate for applications in field-emission electronic devices.  相似文献   

14.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   

15.
利用类似Delta掺杂技术在硅衬底上沉积Mg:Ga2O3薄膜, 然后在850 ℃下对薄膜进行氨化, 反应后制备出大量Mg掺杂GaN纳米线. 采用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱和高分辨透射电子显微镜(HRTEM)对样品进行分析.结果表明, Mg掺杂GaN纳米线具有六方纤锌矿单晶结构, 纳米线的直径在30-50 nm范围内, 长度为几十微米.  相似文献   

16.
Yu Q  Yu C  Yang H  Fu W  Chang L  Xu J  Wei R  Li H  Zhu H  Li M  Zou G  Wang G  Shao C  Liu Y 《Inorganic chemistry》2007,46(15):6204-6210
Large-scale uniform dumbbell-like ZnO microcrystals were successfully synthesized via a facile solution method under mild conditions. The as-prepared dumbbells, with lengths of 3.5-5.4 microm and diameters of 1.3-1.8 microm, possess a single-crystal hexagonal structure and grow along the [0001] direction. The influence of the reactant concentration on the size and shapes of the ZnO samples had been studied, and the results revealed that the reactant concentration plays a crucial role in determining final morphologies of the samples. Moreover, the evolution process of the dumbbell-like ZnO microcrystals was viewed by field-emission scanning electron microscopy (FE-SEM) characterization, and a possible formation mechanism was proposed. In addition, optical properties of the ZnO samples prepared at different reaction times were also investigated by photoluminescence (PL) spectroscopy. The room-temperature PL spectrum of the dumbbell-like ZnO microcrystals shows a strong UV emission peak. The UV emission is further identified to originate from the radiative free-exciton recombination by the temperature-dependent PL.  相似文献   

17.
高利聪  贺英  周利寅 《化学学报》2008,66(14):1713-1719
采用独特的高分子溶液自组装生长方法, 在经化学镀预处理的基底上利用高分子溶液的网络络合效应制备了ZnO纳米线. 通过场发射扫描电子显微镜(FE-SEM), X射线能谱仪(EDS)等对样品的表面形貌及组成进行了观测表征. 结果显示, 纳米线直径约50 nm, 长度达到了数微米; 产物Zn、O化学计量比接近1∶1. 通过Si基底经化学镀工艺预处理和未经化学镀预处理对ZnO纳米结构、紫外吸收和PL性能影响的分析比较, 发现了化学镀Ni对于纳米线长度和直径尺寸的控制更为有效; 在PL图谱中, 经化学镀预处理的样品在中心波长385 nm出现了由激子碰撞复合所形成的近紫外发光峰. 进一步还分析了在不同的pH值和反应时间下样品的紫外吸收和光致发光性能. 通过以上实验, 讨论并提出了ZnO纳米线的生长机理及过程, 认为纳米线的生长是在化学镀催化剂和高分子双重作用下进行的.  相似文献   

18.
以湿化学法合成了直径约35 nm的蓬松的α-ZnS球形纳米粒子. XRD与TEM结果表明, 硫化锌球形纳米粒子由粒径约6 nm的二次晶粒组成. 光致发光光谱表明, 所得样品分别在约430 nm及360 nm处各有一个发射谱带, 前者源于ZnS的表面缺陷发射, 后者可被指认为六方相ZnS的近带边发射. 拉曼表征结果表明, 在较高激光功率的照射下, 没有观察到样品的光氧化现象, 表明所制备的硫化锌纳米粒子结构较为稳定.  相似文献   

19.
Wang G  Park J  Wexler D  Park MS  Ahn JH 《Inorganic chemistry》2007,46(12):4778-4780
In2O3 semiconductor nanowires were synthesized by the chemical vapor deposition method through carbon thermal reduction at 900 degrees C with 95% Ar and 5% O2 gas flow. The In2O3 nanowires were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy (PL). For the first time, we observed the formation of corundum-type h-In2O3 nanowires and branched In2O3 nanowires. The PL spectra of In2O3 nanowires show strong visible red emission at 1.85 eV (670 nm) at low temperature, possibly caused by a small amount of oxygen vacancies in the nanowire crystal structure.  相似文献   

20.
Fang F  Zhao D  Shen D  Zhang J  Li B 《Inorganic chemistry》2008,47(2):398-400
Ultrathin ZnO nanowire bundles have been synthesized on an indium-tin oxide substrate without any catalyst by using a simple thermal evaporation method, where self-organized ZnO nanowire bundles were grown on the hexagonal heads of ZnO nanocolumns. The nanowires obtained typically have diameters of 8 nm, with lengths extending to 0.25 microm. The size is the same order of magnitude as the ZnO exciton Bohr radius (aB). Room-temperature photoluminescence measurement shows a prominent peak at 374 nm (3.32 eV), which is about 100 meV blue-shifted from the bulk ZnO emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号