首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Gel poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer electrolytes doped with graphene oxide (GO) (GO/PVDF-HFP) were designed and fabricated through a phrase inversion method and followed by LiPF6 solution uptake. It was demonstrated that the as-prepared GO/PVDF-HFP polymer electrolytes have uniform porous morphologies, and their crystalline state, thermal stability, interfacial resistance, and electrolyte uptake and retention capabilities can be tuned by varying the GO contents. Further, it was found that the GO can prominently enhance the ionic conductivity of the GO/PVDF-HFP polymer electrolyte. The electrochemical property measurements show that the lithium ion batteries using as-prepared GO/PVDF-HFP polymer electrolytes afford admirable charge/discharge rate and cycle stability.  相似文献   

2.
A new approach to the fabrication of back-gated graphene FET (field effect transistor) arrays on microchannels was investigated. Narrow walls fabricated on a substrate with SU-8 (a negative photoresist), with top metal electrodes were pressed onto another silicon/SiO2 substrate with predeposited graphene pieces such that the electrodes came into contact with graphene pieces and formed the source and drain contact. The SU-8 narrow walls with the top metal layer were fabricated by the conventional lift-off process. The graphene pieces were reduced chemically from graphite oxide. The IDS changed immediately by more than 17% when the device was exposed to an ethanol atmosphere. The current recovered very well after the ethanol gas was pumped out. The SU-8 microchannels served as gas flow passages that helped the ethanol vapor reach the sensitive region of the device: the graphene channel. This work provides a convenient way of constructing back-gated graphene FETs for sensing applications. This method could potentially be scaled up for mass production.  相似文献   

3.
The graphene (Gr)/Si electrodes were fabricated by electrophoresis method and then following an annealing process. The p-Si surface was found to be covered completely with successive and transparent Gr sheets, and thus the impairment of aqueous solution on the photoelectrochemical capability of silicon could be avoided. This annealing process was a key process for improving the adhesion of Gr/Si interface. After annealing at 400 °C, the Gr/Si electrodes displayed high photoresponse ability and high stability in aqueous solution. The carriers transfer between Gr and Si is discussed on the basis of the semiconductor energy band theory. The results demonstrated that the Gr/Si electrodes would be a promising candidate as solar energy materials using in aqueous solution.  相似文献   

4.
张薇  陈鲁倬  张健敏  黄志高 《中国物理 B》2017,26(4):48801-048801
In recent years,actuators based on carbon nanotube(CNT) or graphene demonstrate great potential applications in the fields of artificial muscles,smart switches,robotics,and so on.The electrothermal and photothermal bending actuators based on CNT/graphene and polymer composites show large bending actuations,which are superior to traditional thermaldriven actuators.However,the influence of material parameters(thickness,temperature change,etc.) on the actuation performance needs to be further studied,because it is a critical point to the design and fabrication of high-performance actuators.In this work,finite element analysis(EEA) is employed to simulate the actuation performance of CNT/polymer actuator,which has a bilayer structure.The main focus of this work is to design and to optimize material parameters by using computational method.FEA simulation results show that each layer thickness of actuator has an important influence on the actuation deformation.A maximum curvature of 2.7 cm~(-1) is obtained by simulation,which is much larger than most of the actuator curvature reported in previous experiments.What is more,larger temperature change and larger difference of coefficient of thermal expansion(CTE) between two layers will result in larger bending actuation.This study is expected to provide valuable theoretical reference for the design and realization of CNT-based thermal actuator with ultra-large actuation performance.  相似文献   

5.
A supercapacitor using non-aqueous electrolyte and multiwalled carbon nanotube (MWNTs) nanocomposite electrodes has been designed with polymer and metal oxide loaded carbon nanotubes as electrodes. These nanocomposites were coated on the carbon paper with Nafion solution to obtain the flexible electrodes. Carbon paper with the nanocomposite coating was pressed on either sides of the Nafion membrane, which acts both as a separator and as an electrolyte. The performance of asymmetric assembly of electrochemical double layer capacitor with polymer- and metal oxide-dispersed MWNTs composite materials with non-aqueous Nafion electrolyte is compared with symmetric assemblies, and the results are discussed.  相似文献   

6.
Graphene/ZnO hybrid was used, for the first time, to fabricate a highly selective and sensitive graphene based gas sensor by a combination of electromechanical and electrochemical characteristics of the graphene. ZnO nanowires in our fabricated sensor have two important roles: as the reductant of graphene oxide to obtain graphene and as an efficient electromechanical actuator due to their piezoelectric properties. To investigate the operation of the fabricated sensor as a gas sensor, a selected set of chemical vapors were introduced to the structure. It was found that chemical vapors change the resonance frequency of the graphene/ZnO structure, as well as the electrical resistivity of the sensor. The observed variation of the mechanical and electrical characteristics of the graphene/ZnO in response to gas exposure entitles the graphene/ZnO based sensor as a highly selective/sensitive device for gas sensing applications with distinctive signatures for different gas species.  相似文献   

7.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

8.
The present study aimed at developing a simple sonochemical method to prepare graphene nitride from the mixture of graphite and aqueous ammonia solution. Ultrasound of 1.6 MHz was irradiated to the sample in a fabricated sonoreactor at predetermined ultrasonic power and duration. The one-pot method succeeded in the preparation of graphene nitride. The generation was proven by XPS analysis in finding N1S peak in the spectrum. Detail analysis of N1s peak suggested that the major nitrogen species was pyrrolic type. Furthermore, the presence of CO bond proved the oxidation by OH radical. The reaction product had the value of N/C as high as 0.08, which is comparable to reported values for ultrasonic preparation of graphene nitride. The fact indicates that the significance of chemical effects of MHz range ultrasound, and the finding of the simple preparation method will accelerate practical application of graphene nitride.  相似文献   

9.
Poly(vinylidene fluoride)-based polymer electrolytes using ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide as the plasticizer were prepared by solution casting method. The effects of the solvent evaporation temperature (SET) and ionic liquid content (ILC) on the properties and structures of the polymer electrolytes were investigated by characterization of scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry, as well as mechanical and ionic conductivity test. It was confirmed that both SET and ILC had significant influence on the morphology, degree of crystallinity, mechanical properties, and ionic conductivity of the prepared polymer electrolytes. With ILC of 40 %, an excellent polymer electrolyte can be obtained at SET of 60 °C, which exhibited ionic conductivity up to ca. 10?4 S/cm at room temperature, accompanied by excellent tensile strength of 22.8 MPa and elongation at break of 540 %.  相似文献   

10.
以聚碳酸酯(polycarbonate,PC)为模板,聚乙烯亚胺(polyethyleneimine,PEI)为连接剂,采用静电层层自组装技术制备了人血清白蛋白(human serum albumin,HSA)微米管和纳米管,讨论了溶液pH、离子强度、组装层数、沉淀清洗次数和模板孔径对组装效果的影响。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FTIR)和X射线能谱仪(EDS)对蛋白质微/纳米管的结构和组成进行了表征。结果表明,溶液pH和离子强度是影响组装效果的关键因素,在HSA和PEI溶液pH分别为7.4和10.3,且PEI溶液不含NaCl的条件下组装得到的微/纳米管具有良好的中空开口管状结构;微/纳米管的外径由模板孔径决定;调节组装层数可控制管壁厚度,且组装层数越多,管壁越厚,由此可实现对微/纳米管内径大小的调控;为保证管状结构的完整性,避免较薄的管壁在模板溶解和真空干燥过程中造成破坏,PEI/HSA双分子层数应不少于3;采用极性胺基溶剂N,N-二甲基甲酰胺(N,N-Dimethylformamide, DMF)可较好地溶解PC模板从而释放管状物。  相似文献   

11.
We present a solution to the difficult task of removing an oxide-based hard mask from a photonic crystal fabricated in the GaAs/AlGaAs system. We use a polymer backfill technique to seal the AlGaAs layer, thereby making it inaccessible to the wet-etch solution. This allows us to use a GaAs active layer for the photonic crystal placed on an oxidised AlGaAs layer which provides mechanical and thermal support. Using this technique, we fabricated GaAs-based photonic crystal cavities and measured respectable quality factors (Q  2200) despite the intrinsic asymmetry of the system. The technique presents a viable method for producing electrically injected photonic crystal cavities for operation on a mechanically stable and thermally conducting buffer layer.  相似文献   

12.
Quasi-solid bioelectrolytes based on hydroxyethyl cellulose (HEC) and sodium iodide (NaI) in three different polar aprotic solvent systems, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and dimethylacetamide (DMA), were fabricated and characterized. FTIR studies revealed active solvent-ion interactions in DMF-based electrolytes in comparison to DMA and DMSO. The effect of the solvent system on the crystallinity of HEC gel electrolytes was more significant at low NaI concentration. In each solvent system, the highest ionic conductivity was achieved at 70 wt% NaI and generally DMF-based electrolytes showed higher conductivity than the other solvents. The availability of multiple complexation sites present in DMF is ascribed to improvement in ion mobility and hence conductivity. Rheological analysis was carried out to elucidate the mechanical properties of the gels. Generally, the mechanical strength of the polymer gels was unaffected by the type of solvent.  相似文献   

13.
将离子液体应用于气浮溶剂浮选,建立了一种分离/富集四环素类(tetracyclines, TCs)抗生素的新方法——离子液体气浮溶剂浮选。最优化浮选条件为:以1-己基-3-甲基咪唑六氟磷酸盐([Hmim]PF6)和乙酸乙酯(EA)的混合溶剂(φ=1/0.9)为浮选剂,以Fe(Ⅲ)为捕集剂,pH值为7.6,气体流速为40 mL·min-1,浮选时间为50 min。富集TCs-Fe(Ⅲ)配合物的[Hmim]PF6-EA相用荧光光谱法直接测定,其线性回归方程为F=246.5c+4.32(c: μg·10 mL-1),相关系数r=0.999 1。实测了鱼塘表面水体和沉积物中四环素类抗生素的含量,加标回收率达到94.2%~100.4%,RSD<3.2%(n=5)。红外光谱分析显示TCs-Fe(Ⅲ)配合物没有和离子液体发生反应,离子液体在气浮溶剂浮选中只起到溶剂作用。该方法适合于环境水样中痕量四环素类抗生素的分离/富集及分析。  相似文献   

14.
In this paper, a novel ZnO/graphene/porous silicon hybrid device is fabricated and its electrical behaviors are studied along with a ZnO/graphene/silicon device. Graphene (G) is prepared by exfoliation of graphite foil in aqueous solution of inorganic salt. Porous silicon (PS) is fabricated by electrochemical etching of p-type silicon (Si). Graphene is deposited on the surface of Si and PS substrates by thermal spray pyrolysis method. ZnO rods are grown on the samples by using catalyst-free chemical vapor transport and condensation method. The current–voltage relationships of ZnO/G/Si and ZnO/G/PS devices are studied under different volumes of graphene solution. The results reveal the distinctive features of the I–V characteristics of the two devices for different volumes of graphene solution under room light as well as UV illumination.  相似文献   

15.
Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7?×?10?3 S cm?1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48?×?10?7 S cm?1. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.  相似文献   

16.
E. Sheha 《Solid State Ionics》2009,180(36-39):1575-1579
This paper describes the synthesis and characterization of a new solid acid polymer electrolyte (SAPE) based on polyvinyl alcohol, lithium bromide and sulfuric acid. Ethylene carbonate was used as plasticizer in the matrix for membranes prepared by a solution cast technique. AC impedance spectroscopy was used to determine the ionic conductivity of SAPE at different temperature and frequency values giving some insight into its potential utility as a solid acid membrane in solid state batteries. The ionic transference number of mobile ions has been estimated by a dc polarization method and the results reveal that the conducting species are predominately ions. A solid state magnesium battery is fabricated and characterized. A cell with the configuration Mg/SAPE/MnO2 gives a capacity of 270 mAh/g and has an internal resistance ≈ 175 Ω. The electrode degradation after discharge was characterized by XRD analysis.  相似文献   

17.
A polymer blend electrolyte based on polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) was prepared by a simple solvent casting technique in different compositions. The ionic conductivity of polymer blend electrolytes was investigated by varying the PAN content in the PVA matrix. The ionic conductivity of polymer blend electrolyte increased with the increase of PAN content. The effect of lithium salt concentrations was also studied for the polymer blend electrolyte of high ionic conductivity system. A maximum ionic conductivity of 3.76×10−3 S/cm was obtained in 3 M LiClO4 electrolyte solution. The effect of ionic conductivity of polymer blend electrolyte was measured by varying the temperature ranging from 298 to 353 K. Linear sweep voltammetry and DC polarization studies were carried out to find out the stability and lithium transference number of the polymer blend electrolyte. Finally, a prototype cell was assembled with graphite as anode, LiMn2O4 as cathode, and polymer blend electrolyte as the electrolyte as well as separator, which showed good compatibility and electrochemical stability up to 4.7 V.  相似文献   

18.
A sensor for the highly sensitive determination of Sudan I based on the amplified electrochemical response of mesoporous TiO2-decorated graphene (GN–TiO2) was fabricated. The nanoparticles of TiO2 arrayed densely and uniformly on the GN sheets, as confirmed by field emission scanning electron microscopy and transmission electron microscopy images. The electrochemical behavior of Sudan I at this sensor was studied in detail, showing that this sensor exhibited electrocatalytic activity for the oxidation of Sudan I because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the experimental parameters including supporting electrolyte, volume of GN–TiO2 suspension on electrode surface, accumulation potential, and time were optimized and the electrochemical reaction mechanism of Sudan I on this sensor was investigated. The linear range is from 3.3 nM to 0.66 μM, and the limit of detection is estimated to be 0.60 nM. At last, the sensor was used to determine Sudan I in food sample extracts, which are in good agreement with the results obtained by chromatographic method.  相似文献   

19.
《Current Applied Physics》2010,10(4):985-989
In the polymer photovoltaic devices (PVDs), the performance of devices was strongly influenced by region-regularity, number average molecular weight and casting solvents of polymers. In this work, we fabricated p–n bulk-hetero-junction PVDs based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) using various solvents such as chloroform (CF), chlorobenzene (CB), dichlorobenzene (DCB), and mixed solvent (CF/CB, CF/DCB). Thin film of active layer with P3HT/PCBM was prepared by spin coating and thermal annealing at 150 °C with fixed thickness about 110 nm by adjusting solution concentration. The crystalline morphology and layered phase for the active layer were studied by atomic force microscopy and X-ray diffraction, respectively. We investigated the performance of solar cells according to different morphology and crystallinity of active layer by various solvent and mixed solvent.  相似文献   

20.
A novel nano-porous material SiO2-gel was prepared. After being purified by H2O2, then protonized by H2SO4 and desiccated in vacuum, the SiO2-gel, mixed with Nation solution, was coated between an electrode and a solid electrolyte, which made a new type of self-humidifying membrane electrode assembly. The SiO2 powder was characterized by FTIR, BET and XRD. The surface of the electrodes was characterized by SEM and EDS. The performances of the self-humidifying membrane electrodes were analyzed by polarization discharge and AC impedance under the operation modes of external humidification and self-humidification respectively. Experimental results indicated that the SiO2 powder held super-hydrophilicity, and the layer of SiO2 and Nation polymer between electrode and solid electrolyte expanded three-dimension electrochemistry reaction area, maintained stability of catalyst layer and enhanced back-diffusion of water from cathode to anode, so the PEM Fuel cell can generate electricity at self-humidification m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号