首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   26篇
化学   38篇
综合类   2篇
物理学   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2001年   5篇
  2000年   1篇
  1997年   3篇
  1995年   2篇
排序方式: 共有43条查询结果,搜索用时 203 毫秒
1.
王超  蒋伟  陈瀚翔  朱林华  罗静  杨文书  陈光英  陈志刚  朱文帅  李华明 《催化学报》2021,42(4):557-562,中插1-中插4
以铂系金属为代表的贵金属催化剂在工业反应中通常表现出优异的催化性能,这是因为其具有独特的d带电子结构和较高的价电子比.近年来,由于大气排放法规愈发严苛,铂系贵金属催化剂在催化空气氧化燃油脱硫方面的研究引起了广泛关注.在该催化反应中,铂系金属纳米粒子可以有效活化空气中的氧气,产生的活性氧物种可以将油品中的噻吩类硫化物氧化为其对应的强极性砜类物质,从而可以将其从非极性的油品中分离出来,有效实现油品中硫化物的深度氧化脱除.然而,在反应过程中铂系贵金属纳米粒子易发生流失和烧结,从而导致催化剂的失活.因此,急需寻找一类可以有效固载铂系贵金属纳米粒子的载体.在目前已报道的众多载体中,以ZrO2、TiO2、CeO2、ZnO等为代表的过渡金属氧化物引起了广泛的关注.通常认为,铂系贵金属纳米粒子的d轨道电子和过渡金属氧化物之间可形成金属-载体强相互作用.然而,目前所使用的过渡金属氧化物载体的比表面积较小,从而导致铂系贵金属纳米粒子难以有效且均匀地分散于其表面.本文采用热膨胀气相剥离法制备了超薄V2O5纳米片,并通过超声辅助沉积法将Pt纳米粒子固载于其表面,从而得到一系列可高效活化空气氧化脱硫的催化剂(Pt NPs-n/V2O5纳米片).通过电感耦合等离子体光谱、高倍透射电镜、原子力显微镜、X射线光电子能谱、X射线衍射、拉曼光谱和氮气吸附脱附等方法对催化剂的结构和形貌进行了表征.结果表明,尺寸为4-5 nm的Pt纳米粒子可有效均匀分散于层数约为6层的V2O5纳米片表面;在空气氧化脱硫反应中,当催化剂中Pt理论负载量为2 wt%时,反应5 h后,油品的脱硫率可达99.1%,实现了硫化物的深度氧化脱除.该反应体系对不同硫浓度、不同含硫底物的油品均有较好的脱除效果,但对含有烯烃、芳烃的油品脱除效果较差.此外,催化剂循环使用7次后,其脱硫活性仍无明显下降,表现出优异的重复使用性能.对反应后的催化剂进行表征,发现Pt几乎不发生流失,这可能是由于Pt纳米粒子和V2O5纳米片之间形成了金属-载体强相互作用.该结果为其他空气氧化反应的有效进行提供了新思路.  相似文献   
2.
3.
采用柠檬酸法制备了LaMnO3、LaFeO3、La0.5Sr0.5MnO3、La0.5Sr0.5FeO3,通过负载纳米Pt合成了Pt负载钙钛石催化剂,XRD与IR数据表明合成的催化剂具有钙钛石相,TEM数据表明合成的纳米Pt粒径为~3 nm,均匀分散在钙钛石上。在CO氧化反应中,发现钙钛石的氧化-还原性能是影响其活性的重要因素,因而,Mn系钙钛石表现出较高的CO氧化活性。负载纳米Pt后,Fe系钙钛石则显示出更优异的CO氧化活性,CO完全转化的温度从350 ℃降至120 ℃。吸附实验表明钙钛石上氧空位对促进O2的吸附起着非常重要的作用,也是影响CO低温氧化的重要因素之一。  相似文献   
4.
通过季铵盐改性四钛酸钾晶须,应用X射线衍射分析、红外光谱,紫外-可见漫反射光谱对改性前后的四钛酸钾晶须进行表征,并初步研究了不同季铵盐改性的四钛酸钾晶须对苯酚吸附性能的研究。实验结果表明,改性前后的四钛酸钾晶须在紫外光区均有较强的光吸收,而在可见光区其吸收则较弱。改性前后四钛酸钾晶须的结构没有改变,季铵盐能够进入层状化合物的层板间,使改性后的层间距稍微增大。与改性前相比,改性后的四钛酸钾晶须对苯酚的吸附量和吸附率有了明显的提高。  相似文献   
5.
微波促进酸性离子液体催化水杨酸酯化   总被引:2,自引:0,他引:2  
用自制的硫酸氢1-甲基-3-(3-磺酸基丙基)咪唑([MIMPS]HSO4)酸性离子液体作为水杨酸与醇的酯化反应催化剂,考察了温度、时间、物料配比和离子液体用量等因素对酯化反应的影响,优化的最佳反应条件为: 微波辐射时间20 min,反应温度95 ℃,醇与酸摩尔比3∶1(水杨酸的量为0.02 mol),[MIMPS]HSO4用量10 mmol,水杨酸甲酯的产率和选择性分别为91.9%和99.0%。 离子液体回收循环使用4次,催化效率不变。 与热催化酯化反应相比,微波辐射可缩短反应时间;水杨酸与不同碳链醇的酯化产率随着碳链的增加而降低,同碳链的伯醇酯化率比仲醇高。  相似文献   
6.
CdS/石墨烯纳米复合物的可见光催化效率和抗光腐蚀行为   总被引:1,自引:0,他引:1  
严佳佳  王坤  许晖  钱静  刘巍  杨兴旺  李华明 《催化学报》2013,34(10):1876-1882
制备了一系列CdS纳米晶/石墨烯(CdS/GR)复合物,并在可见光照条件下评价了其光催化降解亚甲基蓝的光催化效率和抗光腐蚀行为. 研究表明,石墨烯的引入加速了CdS纳米晶(NCs)光生电子的迁移速率,抑制了其光生电子-空穴的复合,有效改善了其光催化降解有机污染物的性能. CdS/GR复合物中的石墨烯含量显著影响其光催化效率,其中石墨烯含量为4.6%的光催化剂效率最高,其光电流是CdS NCs的2.3倍. 利用光电化学和X射线衍射技术进一步证实,石墨烯的引入抑制了CdS NCs光腐蚀的发生,提高了CdS/GR复合物的光催化稳定性.  相似文献   
7.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   
8.
Pd(OAc)2/FePc催化环己烯氧化合成环己酮的研究   总被引:6,自引:0,他引:6  
李华明  叶兴凯 《分子催化》1997,11(4):258-262
考察了几种Fe-大环配合物与Pd(OAc)2组成的双组分催化体系,在乙腈酸性水溶液中环己烯经合成环己酮的催化活性,实验结果表明,其中以酞菁失(FePc)与Pd(OAc)2组成的催化体系活性最高,而FeTPPCl与Pd(OAc)2催化体系,虽然催化活性较高,但催化剂的稳定性较低,各种因素对Pd(OAc)2/FePc催化活催化影响的研究结果指出,在无水和酸存在的非水溶液中,Pd(OAc)2/FePc对  相似文献   
9.
将离子液体应用于气浮溶剂浮选,建立了一种分离/富集四环素类(tetracyclines,TCs)抗生素的新方法——离子液体气浮溶剂浮选。最优化浮选条件为:以1-己基-3-甲基咪唑六氟磷酸盐([Hmim]PF6)和乙酸乙酯(EA)的混合溶剂(φ=1/0.9)为浮选剂,以Fe(Ⅲ)为捕集剂,pH值为7.6,气体流速为40 mL.min-1,浮选时间为50 min。富集TCs-Fe(Ⅲ)配合物的[Hmim]PF6-EA相用荧光光谱法直接测定,其线性回归方程为F=246.5c+4.32(c:μg.10 mL-1),相关系数r=0.999 1。实测了鱼塘表面水体和沉积物中四环素类抗生素的含量,加标回收率达到94.2%~100.4%,RSD3.2%(n=5)。红外光谱分析显示TCs-Fe(Ⅲ)配合物没有和离子液体发生反应,离子液体在气浮溶剂浮选中只起到溶剂作用。该方法适合于环境水样中痕量四环素类抗生素的分离/富集及分析。  相似文献   
10.
近年来,环境污染与能源短缺已经成为人类需解决的问题,因此新型绿色能源的开发显得尤为重要.在众多新型能源当中,太阳能由于其安全无害、无二次污染、应用前景广泛等优点而备受关注.半导体光催化技术作为一项可以直接将太阳能转化为化学能的新兴技术,可以有效地利用太阳光实现环境治理和能源转化的目的,已被应用于光催化分解水、光催化合成氨、光催化二氧化碳还原以及光催化降解有机污染物等不同研究领域.然而传统的光催化剂材料TiO_2对太阳光的利用效率较低,大大限制了光催化技术的广泛应用.因此,研发新型高效光催化半导体材料成为人们的研究热点.相比于普通的体材料,低维和小尺寸纳米材料往往具备更为优良的物化特性.一维尺寸的三元钒酸盐材料作为一类极具前景的多功能纳米材料,在光学设备、光催化降解、电极材料以及电化学传感器等诸多领域都具有广泛应用.其中,钒酸铁材料作为钒酸盐系列中的一员,其有着合适的带隙且能响应可见光,是一种具有研究前景的光催化材料.三斜相的钒酸铁具有层状结构,这有利于光生载流子在层间进行有效的分离和迁移,从而提高光催化降解性能.同时,离子液体作为一种结构高度可调的绿色有机盐,在微纳米材料的可控制备方面起着关键作用.本文选取1-辛基-3-甲基咪唑氯盐作为反应铁源,利用离子液体辅助溶剂热法合成了钒酸铁前驱体材料FeVO_4·1.1H_2O.通过调控煅烧温度,可控制备了尺寸均一的介孔钒酸铁纳米棒材料.同时,选取无机盐氯化铁作反应铁源制备了钒酸铁纳米棒作为对比.根据X射线粉末衍射图谱可知,当煅烧温度升到400°C时,前驱体材料的晶相转变为过渡相;当煅烧温度升到500°C时,出现了清晰的归属于钒酸铁的特征衍射峰,表明钒酸铁结构形成.从扫描电镜图可以清楚地观察到所制备的前驱体材料为结构均一且表面光滑的纳米棒结构,其长度为2–3μm.经过煅烧处理后,在钒酸铁纳米棒表面形成孔径为5–20 nm的介孔结构,这可能是由于煅烧过程中前驱体材料发生脱水重结晶.结合X射线衍射图谱,确定了介孔钒酸铁纳米棒的形成过程.此外,通过氮气吸附-脱附等温线得到了介孔钒酸铁材料的比表面积.在光催化降解过程中,大的催化剂比表面积可以为反应基质提供充分的吸附位点和反应活性位点,从而有利于提高光催化反应活性.选取抗生素四环素作为目标污染物分别考察了在无机盐(FeVO_4-FC)和离子液体(FeVO_4-IL)条件下制备的钒酸铁材料的催化性能.其中,四环素的自降解作用可以忽略.在加入H_2O_2光照120 min后,FeVO_4-IL表现出比Fe VO_4-FC更高的光催化性能.此外,采用染料罗丹明B进一步确定所制备材料的光催化性能.结果表明,在相同的光照时间后,FeVO_4-IL有着更高的催化降解活性.对介孔纳米棒进行了稳定性测试,在四次循环后,未发现其光催化活性有明显降低,其结构也保持不变.电化学阻抗测试结果显示,相比于FeVO_4-FC材料,FeVO_4-IL有着更小的阻值,表明离子液体可控合成的介孔纳米棒材料更有利于光生电荷的传输,从而增强了光催化降解活性.基于一系列表征结果,我们提出了多孔钒酸铁纳米棒可能的光催化降解机制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号