首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
开展了针对微量纳米金与牛血清白蛋白相互作用的毛细管电泳研究, 测得二者的结合常数为28.6 L/μmol, 每个纳米金颗粒吸附约24个牛血清白蛋白分子. 结果表明, 牛血清白蛋白可改善并稳定纳米金的峰形, 二者作用时温育介质的pH以及电泳所用的缓冲溶液浓度对毛细管电泳(CE)效率有重要影响. 此法可推广到其它纳米颗粒的吸附研究中.  相似文献   

2.
根据电泳与电导的测量得出,聚苯乙烯胶乳质点的ξ电势随电解质浓度增加而变大,主要是质点表面基团与溶液间离子交换的结果。根据Langmuir吸附公式与Stern双电层模型,由电泳数据求出了表面活性阳离子在聚苯乙烯胶乳上的吸附自由能与吸附位数。增大电解质浓度使质点表面吸附位数增加,表面活性阳离子的吸附量也因此变大。  相似文献   

3.
毛细管电泳涂层柱技术的进展   总被引:8,自引:0,他引:8  
康经武  陆豪杰  欧庆瑜 《色谱》1998,16(1):26-29
毛细管电泳涂层柱是解决蛋白质在毛细管壁吸附的最有效的方法。较为系统地综述了毛细管电泳涂层柱的几种制作方法,指出了毛细管电泳涂层柱(包括毛细管电色谱柱)的发展趋势,39篇。  相似文献   

4.
径向电场调制毛细管电泳法用于蛋白质分离   总被引:1,自引:0,他引:1  
朱英  陈义 《高等学校化学学报》1999,20(10):1533-1537
利用自制的双向电场控制毛细管电泳新系统,考察了蛋白质的分离情况.结果发现,在低pH值下,通过施加径向电场,不仅可改变电渗流的大小和方向,而且能抑制蛋白质的吸附,进而实现对蛋白质分离效率和分离速度的调控.研究结果表明,可通过物理化学方法实现毛细管电泳的动态或随机调控,这对许多生物样品分离有实际意义.  相似文献   

5.
董娅妮  方群 《色谱》2008,26(3):269-273
重点介绍了近年来国内外在微流控芯片毛细管电泳法用于蛋白质分离分析方面的研究进展。按照分离模式的不同,综述了各种应用于蛋白质分离的微流控芯片毛细管电泳系统,讨论了抑制芯片中的蛋白吸附的各种方法,并展望了芯片毛细管电泳系统在蛋白质分离领域的发展前景。引用文献47篇。  相似文献   

6.
温敏梳状嵌段共聚物对PS微球阻抗蛋白吸附作用的研究   总被引:2,自引:0,他引:2  
采用可逆加成断裂链转移聚合(RAFT)方法和大分子单体技术,制备了温敏性聚N-异丙基丙烯酰胺(PNIPAM)-聚乙烯基吡咯烷酮(PVP)与PNIPAM-聚氧化乙烯(PEO)梳状嵌段共聚物,这些共聚物具有PVP或PEO支链.以溶菌酶为蛋白模型研究了所得共聚物对聚苯乙烯(PS)微球表面蛋白吸附的抑制作用.通过絮凝实验、激光散射法表观粒径测定、电泳迁移率测定及蛋白吸附量的定量数据比较了不同梳状结构的抗蛋白吸附效果.结果表明,预吸附梳状嵌段共聚物可有效阻抗蛋白吸附,亲水支链增加阻抗性能提高,即使环境温度高于PNIPAM的相转变温度也能阻抗蛋白吸附.透射电镜和共聚物胶体粒径测试表明,梳状嵌段共聚物阻抗蛋白吸附的机制是预吸附后PVP或PEO亲水支链在微球表面形成了阻隔层.通过PS微球的变温絮凝实验可评价预吸附聚合物的抗蛋白吸附性能,快速获得定性结果.  相似文献   

7.
膨润土对结晶紫的吸附   总被引:5,自引:0,他引:5  
杭瑚  胡博路 《应用化学》1994,11(5):71-74
用分光光度、显微电泳和x-射线衍射等方法研究了膨润土对结晶紫的吸附;实验表明,钙型膨润土在吸收结晶紫溶液时,加入钠盐可明显改善吸附效果。  相似文献   

8.
本文评述毛细管区带电泳中蛋白质的吸附及解决办法,内容包括吸附的原因,通过缓冲溶液组成的变化、通过毛细管内壁改性、通过附加电场等方法降低吸附。对毛细管内壁电荷密度等方法降低吸附。尤其对毛细管内壁改性方法,改性对电渗流及分离效率的影响,改性的稳定性和重复性等进行了较为详细的阐述。  相似文献   

9.
近年来,利用毛细管电泳的诸多优点[1]进行完整细胞的电泳分析已有许多报道[2~6].但由于细胞自身特点,电泳结果(特别是电泳峰形)有很大不同,给分析带来很多困难.为解决上述问题,我们设计并建立了毛细管电泳-紫外检测-显微成像(CE-UV-MVI)联用分析系统,并以人红细胞为对象进行了研究.观察到尖峰与细胞聚集有关,并进行了细胞淌度的高速测定,直观地研究了不同聚集状态细胞的迁移情况,特别是细胞吸附情况.1实验部分1.1试剂与仪器所用药品均为分析纯,购自北京市化学试剂公司.缓冲生理盐水(PBS)由质量分数为0.85%的NaCl和10mmol/L磷酸盐组成…  相似文献   

10.
王雨晨  王延梅 《色谱》2020,38(9):1022-1027
毛细管电泳作为一种常见的液相分离技术,因其分析速度快、分离效率高、样品消耗量少等特点,在蛋白质分离分析领域有广泛应用。然而,常用的熔融硅毛细管容易吸附蛋白质,导致电渗流不稳定,分离结果重现性变差;此外,商用毛细管电泳中常用的紫外检测器由于光程短,使得毛细管电泳的检测灵敏度往往不能达到低丰度蛋白质的直接分析要求。因此寻找能够阻止蛋白质吸附、同时能够提高检测灵敏度的涂层是毛细管电泳分离分析蛋白质的重要课题之一。聚(2-甲基-2-噁唑啉)(PMOXA)作为一种类肽类亲水性聚合物,具有与抗蛋白质吸附聚合物聚乙二醇类似的亲水性、抗蛋白质吸附性和生物相容性,而且其类肽结构使之具有较聚乙二醇更好的稳定性,因此近年来在生物质传递、药物载体和阻抗蛋白质吸附等领域得到越来越多的应用。该文主要从两个方面对聚(2-甲基-2-噁唑啉)在毛细管电泳中的应用进行了阐述。一是利用多巴胺作为黏合层将其涂覆在毛细管内壁作为抗蛋白质吸附涂层,这种涂层不仅能成功分离多种蛋白质的混合物(如溶菌酶、细胞色素C、核糖核酸酶A和α-胰凝乳蛋白酶原A),而且在定量检测奶粉中三聚氰胺、乳铁蛋白的过程中,能阻抗其他蛋白质的非特异性吸附,提高了毛细管电泳对奶粉中三聚氰胺、乳铁蛋白的检测效率。二是将其与具有刺激响应性的聚合物(如聚丙烯酸)构成二元混合刷涂层,在一定的pH和离子强度条件下,涂层可吸附目标蛋白质(如牛血清白蛋白、溶菌酶),在另一pH和离子强度条件下可将吸附的目标蛋白质全部释放,同时在释放过程中,处于涂层表面的聚(2-甲基-2-噁唑啉)会进一步阻止蛋白质的吸附,释放的蛋白质在电渗流和电泳的双重作用下快速迁移,到达检测器的蛋白质瞬时浓度大大增加,使目标蛋白质得到富集,目标蛋白质的检测信号得到放大,从而达到了提高低丰度蛋白质检测灵敏度的目的。此外,该文还对聚(2-甲基-2-噁唑啉)在毛细管电泳分离蛋白质中的未来发展趋势进行了展望。  相似文献   

11.
The adsorption of sodium dodecyl sulfate to colloidal titanium dioxide was investigated using the electrophoretic fingerprinting approach. An electrophoretic fingerprint is a contour diagram of the observed electrophoretic mobility as a function of the bulk solution pH and plambda, the log of the bulk solution conductivity. Surfactant adsorption was observed to be strong under acidic conditions, as illustrated in the dramatic changes in the electrophoretic fingerprints. Electrokinetic data were compared with adsorption isotherm data obtained by a depletion method and good qualitative agreement was found. The observed pH changes associated with surfactant adsorption suggested ligand exchange as a possible mechanism of adsorption. Electrophoretic fingerprinting was shown to be a powerful means of examining surfactant adsorption to colloidal particles. Copyright 2000 Academic Press.  相似文献   

12.
The efforts of adsorption of alkyltrimethyl ammonium bromides on the electrophoretic mobility of a monodisperse polystyrene latex were examined experimentally.The adsorption isotherms were obtained from the electrophoretic data in terms of Stern electrical double layer model.An improved method was proposed for evaluating the number of adsorption sites and adsorption free energy,and the possible mechanism of adsorption was discussed.  相似文献   

13.
The electrophoretic mobility and temperature-dependent particle size of poly(N-isopropylacrylamide) (PNiPAM) microgels after alternating adsorption of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been determined. First a PNiPAM-co-acrylic acid (AAc) shell was added to the PNiPAM microgel, then PDADMAC and PSS were adsorbed alternately. The studies of the electrophoretic mobility revealed charge reversal when a polyelectrolyte (PE) layer was adsorbed. Particle size measurements revealed a strong influence of polyelectrolyte adsorption on the temperature-dependent particle swelling. The strong influence of the adsorbed polyelectrolyte on the particle size is in contrast to polyelectrolyte multilayer adsorption on rigid particles.  相似文献   

14.
Understanding the adsorption of polymers onto particles is crucial for many technological and biomedical applications. Even though polymer adsorption on particles is a dynamic process, most experimental techniques can only study the adsorption indirectly, in equilibrium and on the ensemble level. New analysis methods are required to overcome these limitations. We investigated the use of single-particle electrophoresis to study the adsorption kinetics of cationic polymers onto anionic particles and compared the resulting data to a theoretical model. In this approach, the electrophoretic mobility of single polystyrene (PS) particles, exposed to different concentrations of poly(2-guanidinoethyl methacrylate), was measured as a function of time. The polymer adsorption leads to an electrophoretic mobility change of the PS particle over time, from the initial negative value to a positive value at equilibrium. By fitting the kinetics data to the Langmuir model, the adsorption rate, desorption rate and equilibrium constant were determined. Finally, the adsorption kinetics of several other polymers was investigated. This showed that the presented technique enables direct analysis and comparison of the kinetics of polymer adsorption on the single-particle level.  相似文献   

15.
Various amino acid derivatives of monascus pigments were synthesized. The effects of pigment derivatives on the pigment adsorption ratio, electrophoretic mobility (EPM) of bacterial cells, and antibacterial activity were investigated under varying conditions of pigment type, pigment concentration, pH, and ionic strength. Two hydrophobic and two hydrophilic derivatives were selected as model pigments. There was a close relationship between the antimicrobial activity and the pigment adsorption ratio. Against Escherichia coli, the hydrophobic l-Tyr and l-Phe derivatives (log P = 3.18 and 3.57) exhibited high antimicrobial activities (MIC = 8 and 16 mg/L) and high cellular adsorption ratios (9.6 and 10.9 mg/L). The hydrophilic l-Glu and l-Asn derivatives (log P = 1.40 and 0.47) exhibited low activities (MIC = 64 and 128 mg/L) and low adsorption ratios (4.7 and 4.0 mg/L). The electrophoretic mobility of 11 different bacteria varied between −1.93 × 10−8 and −1.19 × 10−8 m2 V−1 s−1 regardless of Gram+ or Gram. The l-Phe derivative showed low MIC values (high antimicrobial activities) against bacteria with a high electrophoretic mobility. A positive linearity between the pigment adsorption ratio and the electrophoretic mobility was established. When the four pigment derivatives were added to E. coli solutions, the electrophoretic mobility of cells in all cases sharply increased with an increasing pigment concentration. The mobility value was high for hydrophobic pigment derivatives in descending order of l-Phe (0.8 × 10−8 m2 V−1 s−1), l-Tyr (0.68 × 10−8 m2 V−1 s−1), l-Glu (0.46 × 10−8 m2 V−1 s−1), and l-Asn (0.44 × 10−8 m2 V−1 s−1). Additional adsorption of the hydrophobic derivatives probably occurred due to a hydrophobic interaction between the pigment and the pigment-coated cells. The electrophoretic mobility decreased gradually with an increasing pH and/or ionic strength with both addition and no addition of the pigment derivatives. The pattern of change of the pigment adsorption ratio under varying pH and/or ionic strength values was similar to the pattern for electrophoretic mobility.  相似文献   

16.
The adsorption of ethyl and amyl xanthate ions on galena and sphalerite fines has been studied using electrophoretic light-scattering (ELS) measurements. It was performed on galena and sphalerite (<2&mgr;m) in aqueous solution at different potassium ethyl xanthate (PEX) and potassium amyl xanthate (PAX) concentrations. It has been observed that the presence of PEX or PAX caused the isoelectric points (IEP) of galena and sphalerite fines to shift and the electrophoretic mobility to reverse in sign, indicating that the xanthate ions chemisorbed on galena and sphalerite surfaces. This adsorption markedly broadened the electrophoretic mobility distribution of the mineral fines, suggesting that the populations of the particles have quite different adsorption densities of xanthate ions, and therefore the particle hydrophobicity was different. This phenomenon might be attributable to the effect of the hemimicelle adsorption of the xanthate ions on the minerals, the nonuniform distribution of active sites and their degree of activity, the effect of particle size and shape, etc. The nonuniform adsorption has been found to increase with increasing PEX or PAX concentration, reaching a maximum at a medium concentration followed by a decline. Also, experimental results have demonstrated that the nonuniform adsorption of the xanthate ions is much stronger on sphalerite than on galena, which may explain why sphalerite has a worse flotation response than galena when alkyl xanthates are used as collectors in flotation systems. Copyright 2001 Academic Press.  相似文献   

17.
5A沸石在水溶液中对氯化十四烷基吡啶的吸附   总被引:1,自引:0,他引:1  
表面活性剂在固液界面上的吸附作用是十分重要的课题,为此我们开展了这方面的研究[1-3]。沸石结构规则,孔大小均匀,具有特殊的吸附性质。近年来由于作为合成洗涤剂助剂的三聚磷酸钠可使水质富营养化,故国内外都在研究洗涤剂的低磷化措施。  相似文献   

18.
The adsorption properties and surface charge creation for the stearic acid and octadecane/aqueous electrolyte solutions are considered. The hairy structure of surface charge for these systems was confirmed on the basis of potentiometric titration, ion adsorption and electrophoretic measurement data. For the system with stearic acid the reaction of ionization and complexation of carboxyl groups of stearic acid molecules from subsurface layer are responsible for the creation of surface charge and adsorption properties. The surface charge at octadecane particle is probably the results in adsorption and orientation of water molecules at the interface.  相似文献   

19.
An experimental study on the electrophoretic mobility (μe) of polystyrene particles after the adsorption of non-ionic surfactants with different chain lengths is described. Two sulphate latexes with relatively low surface charge densities (3.2 and 4.8 μC cm−2) were used as solid substrate for the adsorption of four non-ionic surfactants, Triton X-100, Triton X-165, Triton X-305 and Triton X-405, each one with 9–10, 16, 30 and 40 molecules of ethylene oxide (EO), respectively. The electrophoretic mobility of the polystyrene–non-ionic surfactant complexes was studied versus the amount of adsorbed surfactant (Γ). The presence of non-ionic surfactant onto particles surface seems to produce a slight shifting of the slipping plane because the mobilities of the different complexes display a very small decreasing. The increase in the number of EO chains in the surfactant molecule seems to operate as a steric impediment which decreases the number of adsorbed large surfactant molecules. The electrophoretic mobilities of the latex–surfactant complexes with maximum adsorption were measured versus the pH and ionic strength of the dispersion. While the different complexes showed a similar qualitative behaviour compared with that of the bare latex against the pH, the adsorption of the surfactant reduces the typical maximum in the μe−log[electrolyte].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号