首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
Magnesium-based biomaterials have been proposed as potential candidates for biodegradable implant materials, such as bone screws, bone plates, intraluminal stents and so on. However, the poor corrosion resistance inhibits their applications in surgery. They collapse before the injured tissues are healed. In this paper, Mg(OH)2 nonstructural film was synthesized on the substrate of AZ31 magnesium alloy by hydrothermal method with NaOH solution as mineralizer to reduce the corrosion rate of magnesium-based materials. The obtained films were characterized by XRD, SEM, and XPS. The results showed that a Mg(OH)2 film with nanostructure surface can be synthesized by hydrothermal method. It was observed that the thickness of film increased with the holding time. Corrosion rates of the films were studied by immersing the samples in Hank's solution (37 °C). Surface deposits of samples with films soaked in Hank's solution for 31 days were investigated by XRD, SEM, EDS, XPS, and FTIR. It verified that the corrosion rate of the magnesium alloy with grown film was slowed down in the Hank's solution and the behavior of corrosion was inhibited effectively. Amorphous calcium apatite precursor was observed to deposit on the surface of the film during corrosion experiments in Hank's solution. And the tape test revealed a strong adhesion between the film and the substrate.  相似文献   

2.
Preparation of highly dispersed MgO and its bactericidal properties   总被引:1,自引:0,他引:1  
Samples of layered double hydroxides (LDHs) were prepared by a method involving separate nucleation and aging steps recently developed in our laboratory, using varying [ Mg2+] /[ Al3+] ratios and different aging conditions. The samples were characterized by X-ray diffraction (XRD), FT-IR spectroscopy and laser granulometry. The results showed that LDHs with different particle sizes could be obtained by controlling the reaction temperature and degree of supersaturation. Calcination of these materials affords mixtures of highly dispersed MgO and mixed metal oxides. Bactericidal experiments against Bacillus subtilis var. niger and Staphylococcus aureus were carried out using materials formed by calcination of the LDHs at 500 C. The mechanism of bactericidal activity was also investigated. It is known that MgO is very readily hydrated and that reaction with dissolved oxygen affords superoxide anions O2-, which attack the secondary amide structure of proteins leading to destruction of the bacteria. The bactericidal activity of the MgO increases with specific surface area because this leads to an increased number of surface hydroxyl groups and higher concentrations of O2- in solution. The bactericidal ability of MgO therefore increases with decreasing particle size.  相似文献   

3.
C.K. Lee 《Applied Surface Science》2008,254(13):4111-4117
A diamond film was deposited on silicon substrate using hot filament chemical vapor deposition (HFCVD), and H2 and O2 gases were added to the deposition process for comparison. This work evaluates how adding H2 and O2 affects the corrosion and wear-corrosion resistance characteristics of diamond films deposited on silicon substrate. The type of atomic bonding, structure, and surface morphologies of various diamond films were analyzed by Raman spectrometry, X-ray diffraction (XRD) and atomic force microscopy (AFM). Additionally, the mechanical characteristics of diamond films were studied using a precision nano-indentation test instrument. The corrosion and wear-corrosion resistance of diamond films were studied in 1 M H2SO4 + 1 M NaCl solution by electrochemical polarization. The experimental results show that the diamond film with added H2 had a denser surface and a more obvious diamond phase with sp3 bonding than the as-deposited HFCVD diamond film, effectively increasing the hardness, improving the surface structure and thereby improving corrosion and wear-corrosion resistance properties. However, the diamond film with added O2 had more sp2 and fewer sp3 bonds than the as-deposited HFCVD diamond film, corresponding to reduced corrosion and wear-corrosion resistance.  相似文献   

4.
The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH)2 and MgF2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm−3 of F is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.  相似文献   

5.
The anodization of ZK60 magnesium alloy in an alkaline electrolyte of 100 g/l NaOH + 20 g/l Na2B4O7·10H2O + 50 g/l C6H5Na3O7·2H2O + 60g/l Na2SiO3·9H2O was studied in this paper. The corrosion resistance of the anodic films was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques and the microstructure and composition of films were examined by SEM and XRD. The influence of anodizing time was studied and the results show that the anodizing time of 60 min is suitable for acquiring films with good corrosion resistance. The influence of current density on the corrosion resistance of anodizing films was also studied and the results show that the film anodized at 20 mA/cm2 has the optimum corrosion resistance. The film formed by anodizing in the alkaline solution with optimized parameters show superior corrosion resistance than that formed by the traditional HAE process. The XRD pattern shows that the components of the anodized film consist of MgO and Mg2SiO4.  相似文献   

6.
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.  相似文献   

7.
A nano TiO2 film was coated on AZ31 alloy substrate by sol-gel method. The TiO2 film was characterized by X-ray diffractometry (XRD), differential scanning calorimetry-thermogravimetric analysis (DSC-TG), field emission scanning electron microscopy (FE-SEM) and energy dispersion spectroscopy (EDS). The degradation of the nano-TiO2 coated alloy was evaluated by immersion test and electrochemical measurement. An attempt was made to relate corrosion of coated alloys with the annealing treatment and resultant structural evolution.  相似文献   

8.
Superconducting MgB2 thick film has been prepared via hybrid physical-chemical vapor deposition method on Al2O3 (0001) substrate by using B2H6 and magnesium ingot as raw materials reacted from 730 to 830°C for 40 min under 20 to 30 kPa. Its thickness is about 40 μm. The MgB2 thick film shows T c (onset) = 39.0 K and T c (0) = 37.2 K. X-ray diffraction pattern shows that the film grown along (101) direction has small amount of impurities of Mg and MgO. Scanning electron microscopy and energy dispersive X-ray spectroscopy indicated that these impurities existed indeed and were Mg rich. The MgO film was formed on the surface of the MgB2 thick film to further protect the sample from oxidation. We presented a new mechanism for the formation of the thick film. Translated from Chinese Journal of Low Temperature Physics, 2005, 27(1) (in Chinese)  相似文献   

9.
Characterization of ceramic PVD thin films on AZ31 magnesium alloys   总被引:1,自引:0,他引:1  
Ceramic thin films have been widely used to protect the metal substrate as coatings in the past years. In order to improve the poor corrosion resistance of AZ31 magnesium alloy, the study in this paper used the electron beam evaporation method to prepare ceramic PVD films on its surface with TiO2 and Al2O3 as donors, respectively. Atomic force microscopy (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) were used to investigate the surface morphology, composition and microstructure of the thin films. Both films deposited on AZ31 took on compact top surface morphologies and grew as amorphous structures on substrate. AES test not only showed that films compositions deviated the standard stoichiometric ratios, but also found that element Mg diffused into films and existed as magnesium oxide in the TiOx film as well as the AlOx film. In the electrochemical corrosion test, the AlOx coating on AZ31 exhibited the largest electrochemical impedance in a 3.5% NaCl solution. But it did not show better corrosion resistance than others for the poorer adhesion. Even if its thickness was small, the TiOx coating on AZ31 exhibited the best corrosion resistance in this study. According to the observation and analysis, the damage of these films on AZ31 in aggressive solutions was mainly due to the existence of pores, microcracks, vacancies and poor adhesion between coating and substrate.  相似文献   

10.
何萌  刘国珍  仇杰  邢杰  吕惠宾 《物理学报》2008,57(2):1236-1240
采用激光分子束外延技术,利用两步法,在Si单晶衬底上成功地外延生长出TiN薄膜材料.原子力显微镜分析结果显示, TiN薄膜材料表面光滑,在10 μm×10 μm范围内,均方根粗糙度为0842nm.霍耳效应测量结果显示,TiN薄膜在室温条件下的电阻率为36×10-5Ω·cm,迁移率达到5830 cm2/V·S,表明TiN薄膜材料是一种优良的电极材料.X射线θ—2θ扫描结果和很高的迁移率均表明,高质量的TiN薄膜材料被外延在Si衬底 关键词: 激光分子束外延 TiN单晶薄膜 外延生长  相似文献   

11.
The boron-doped diamond film (BDD) grown on tantalum (Ta) substrate as an electrode (BDD/Ta) was prepared by hot filament chemical vapor deposition method. The experimental results demonstrated that our BDD/Ta had high current efficiency, strong ability to degrade wastewater, good corrosion stability and long lifetime. These excellent characteristics of BDD/Ta have been explained in terms of Rutherford backscattering (RBS) experiments. RBS investigation revealed that the continuous transient layer at the interface between boron-doped diamond film and Ta-substrate was formed and the microstructure of the continuous transient layer given by the continuous distribution of all element contents at the interface was obtained. The thicknesses of boron-doped diamond film and the continuous transient layer were about equal to 8000 × 1015 atoms/cm2 and 5800 × 1015 atoms/cm2, respectively. The formation of the continuous transient layer at the interface can eliminate the mismatch of thermal expansion coefficients (TEC) at the interface and only lead to the slow change of TEC because of the continuous distribution of element contents of the film and substrate in the transient layer at the interface. Thus, there is no residual stress to concentrate on the interface and the stress-corrosion delamination of the film disappears. Therefore, the corrosion stability and lifetime of BDD/Ta increase and last well, that have been verified by X-ray diffraction (XRD) experiments.  相似文献   

12.
《Current Applied Physics》2010,10(3):719-723
In order to improve the corrosion resistance of ceramic coatings formed on Mg–5mass%Li substrate by micro-arc oxidation (MAO) method, two kinds of additives (Na2B4O7 and EDTA) were doped in Na2SiO3–Na3PO4 solution system. The surface and cross-section morphology feature, phase composition and elemental composition were examined by SEM, XRD and EDX, respectively. Corrosion resistance of ceramic coating was tested by electrochemical methods. It was revealed that all coatings were composed of MgO and Mg2SiO4, and had porous surface structure. Doping of additives had little effect on the elemental composition, while it influenced the morphological feature of the coating. The results of electrochemical tests showed that the coatings prepared in the solutions with additive had good corrosion resistance. The addition of EDTA to the solution made coatings thinner and more uniform which resulted in better general corrosion resistance. The addition of Na2B4O7 to the solution made coatings much thicker and compacter, which improved the pitting corrosion resistance.  相似文献   

13.
NiFe2O4/NiO nanocomposite thin films have been successfully prepared through a facile route using nickel iron layered double hydroxide (NiFe-LDH) as a single-source precursor. This synthetic approach mainly involves the formation of NiFe-LDH film by casting the slurry of NiFe-LDH precursor on the α-Al2O3 substrate, followed by high-temperature calcination. The composition, microstructure and properties of the films were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and vibrating sample magnetometer (VSM). The results indicate that NiFe2O4/NiO composite film was composed of granules with diameter less than 100 nm, and the thickness of the film was in the range 1-2 μm. The magnetization of the film can be tuned by alternating the Ni/Fe molar ratio of LDH precursor. In addition, the method developed should be easily extended to fabricate other MFe2O4/MO composite film systems with specific applications just by an appropriate combination of divalent/trivalent composition in the precursor of LDHs.  相似文献   

14.
Undoped lead zirconate titanate (PZT) and Nb doped lead zirconate titanate (PNZT) films formed on an Ir/Ti/SiO2/Si substrate using an RF magnetron sputtering method were studied in detail. Films of about 3–4 μm thickness were deposited at a substrate temperature of 525 °C. X-ray diffraction measurement (XRD) shows that the obtained PZT and PNZT films are both strongly uniaxially oriented in the (100) direction of the perovskite structure, and TEM observation shows that the films have columnar structures. The addition of Nb results in changes of film electrical characteristics, particularly dielectric constant and hysteresis characteristics. Sputtered PNZT films (Nb 13 at.%) formed on silicon diaphragm structures generate 2 times more deflections than undoped PZT film formed on the same structure, thus demonstrating a superior piezoelectric performance. A sputtering method to directly form a PNZT film with high piezoelectric constant on a substrate at low temperature via electrodes finds a wide potential use in MEMS applications.  相似文献   

15.
The structural, optical and dc electrical properties of MgxAl1-x (0.2≤x≤0.9) gradient thin films covered with Pd/Mg are investigated before and after exposure to hydrogen. We use hydrogenography, a novel high-throughput optical technique, to map simultaneously all the hydride forming compositions and the kinetics thereof in the gradient thin film. Metallic Mg in the MgxAl1-x layer undergoes a metal-to-semiconductor transition and MgH2 is formed for all Mg fractions x investigated. The presence of an amorphous Mg-Al phase in the thin film phase diagram enhances strongly the kinetics of hydrogenation. In the Al-rich part of the film, a complex H-induced segregation of MgH2 and Al occurs. This uncommon large-scale segregation is evidenced by metal and hydrogen profiling using Rutherford backscattering spectrometry and resonant nuclear analysis based on the reaction 1H(15N,αγ)12C. Besides MgH2, an additional semiconducting phase is found by electrical conductivity measurements around an atomic [Al]/[Mg] ratio of 2 (x=0.33). This suggests that the film is partially transformed into Mg(AlH4)2 at around this composition. PACS 78.20.-e; 68.55.-a; 64.75.+g  相似文献   

16.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

17.
This work aims at systematically investigating the corrosion properties of three pipeline steels in static simulated produced water (SPW) saturated with supercritical carbon dioxide using weight-loss tests. SEM, XRD and XPS were employed to study the chemical composition and structure of the corroded surface. The results showed that the corrosion rates of the tested steels significantly decreased with increasing the exposure temperature and time in static SPW saturated with SC-CO2. The surface film on the corroded surface, which markedly influenced the CO2 corrosion behavior of the samples, was mainly composed of (Fe, Ca)CO3 and α-FeOOH. Inhomogeneous element distribution of carbon, oxygen, calcium and iron in the surface film was observed. (Fe, Ca)CO3 formed at a lower temperature was more stable than that formed at elevated temperatures.  相似文献   

18.
Behavior of oxygen in sputtering deposited ZnO films through thermal annealing and its effect on sheet resistance of the films were investigated. The crystallinities of the ZnO film were improved by post-deposition annealing in vacuum. However, the sheet resistance of ZnO film was dramatically decreased after post-deposition annealing in vacuum at more than 300 °C, while O2 desorbed from the film. The oxygen vacancies which acted as donors were formed by the thermal annealing in vacuum. The sheet resistance of the films was recovered by annealing in oxygen ambient. In this paper, 18O2 gas as an oxygen isotope was used as the annealing ambient in order to distinguish from 16O, which was constituent atom of the ZnO films. SIMS analysis revealed that 18O diffused into the ZnO film from the top surface by 18O2 annealing. Therefore oxygen vacancies formed by the post-deposition annealing in vacuum could be compensated by the annealing in oxygen ambient.  相似文献   

19.
Thin films of Mg x Zn1−x O and Mg x Zn1−x O doped with nitrogen were deposited by Radio Frequency plasma beam assisted Pulsed Laser Deposition (RF-PLD) in oxygen or oxygen-nitrogen discharge with different nitrogen/oxygen ratios. A Nd:YAG laser working at a wavelength of 266 nm, having a 10 Hz repetition rate was used for the depositions. The energy density of the incident beam was 3 J/cm2 and the RF power was set to 100 W for all the samples. X-ray Diffraction (XRD) and Spectroscopic Ellipsometry (SE) were employed to investigate the samples. The degree of crystallinity is fount to decrease with increasing the Mg concentration, while the solubility of Mg in ZnO increases by 30% in the N-doped Mg x Zn1−x O thin films grown by RF-PLD. Segregation of MgO phase at a Mg concentration of 30% for Mg x Zn1−x O thin film is detected both by XRD and SE. The band gap of the samples increases from 3.37 up to 3.57 eV with increasing the Mg concentration and the nitrogen/oxygen ratio for each Mg concentration. A dependence of the dielectric function (refractive index) on both stoichiometry and degree of crystalinity is also found, the refractive index having values between 1.7 and 2 in visible spectral range.  相似文献   

20.
S. B. Tang  L. Lu  M. O. Lai 《哲学杂志》2013,93(24):2831-2842
A highly (003)-oriented pure LiCoO2 thin film cathode, without Co3O4 impurities, was grown on a stainless steel substrate by pulsed laser deposition and characterized by electrochemical testing, scanning electron microscopy (SEM), ex situ X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). The initial reversible discharge capacity of the LiCoO2 thin film cathode reached 52.5?μAh/cm2µm and capacity loss was about 0.18% per cycle at a current density of 12.74?μA/cm2. The chemical diffusion coefficient of the Li+ ion was estimated to be about 4.7?×?10?11?cm2/s from cyclic voltammetric (CV) scans. Ex situ XRD revealed that the spacing of crystalline planes expanded about 0.09?Å when charged to 4.2?V, corresponding to Li0.5CoO2, lower than the value for composite powder LiCoO2 electrodes. XPS results showed that the number of low-coordinated oxygen ions increased relative to the removal of Li+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号