首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis and characterization of CdS/PVA nanocomposite films   总被引:1,自引:0,他引:1  
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd2+-dispersed poly vinyl-alcohol (PVA) with H2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of CdS bond at 405 cm−1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.  相似文献   

2.
Nd-doped titania hollow spheres were prepared using carbon spheres as template and Nd-doped titania nanoparticles as building blocks. The Nd-doped titania nanoparticles were synthesized at low temperature. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (DRS). The effects of Nd content on the physical structure and photocatalytic activities of doped titania hollow sphere samples were investigated. Results showed that there was an optimal Nd-doped content (3.9 at.%) for the photocatalytic degradation of dye X-3B (C.I. Reactive Red 2). The apparent rate constant of the best one was almost 9 times as that of P25 titania. The mechanism of photocatalytic degradation of dyes under visible light irradiation was also discussed.  相似文献   

3.
Bi-doped hollow titania spheres were prepared using carbon spheres as template and Bi-doped titania nanoparticles as building blocks. The Bi-doped titania nanoparticles were synthesized at low temperature. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The effects of Bi content on the physical structure and photocatalytic activity of doped hollow titania sphere samples were investigated. Results showed that there was an optimal Bi-doped content (4%) for the photocatalytic degradation of methylene blue (MB).  相似文献   

4.
In this investigation, ZnO nanoparticles were prepared by a simple and rapid method. This method is based on the short time solid state milling and calcinations of zinc acetate and citric acid powders. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, photoluminescence and UV-vis spectroscopy. It was shown that the calcination temperature significantly affected the particle size and optical properties of the synthesized ZnO nanoparticles. Calculation based on the XRD data shows that the average sizes of ZnO particles are in agreement with those from TEM images and the size of the particles increases on increasing the calcination temperature. Also the band gap of samples decreased from 3.29 to 3.23 eV on increasing the calcination temperature from 350 to 600 °C. Photoluminescence analyses show that many defects such as interstitial zinc, zinc vacancy and oxygen vacancy are responsible for the observed optical properties.  相似文献   

5.
Nanoparticles of Zn1−xCrxS (x=0.00, 0.005, 0.01, 0.02 and 0.03) were prepared by a chemical co-precipitation reaction from homogenous solutions of zinc and chromium salts. These nanoparticles were sterically stabilized using 2-mercaptoethanol. Here a study of the effect of Cr doping on structural, morphological and optical properties of nanoparticles was undertaken. Elemental analysis, morphological, structural and optical properties have been investigated by energy dispersive analysis of X-rays (EDAX), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible spectroscopy .EDAX measurements confirmed the presence of Cr in the ZnS lattice. XRD showed that ZnS:Cr nanoparticles crystallized in zincblende structure with preferential orientation along (1 1 1) plane. The average sizes of the nanoparticles lay in the range of 3-6 nm and lattice parameters were in the range of 5.2-5.4 Å. Lattice contraction was observed with an increase of Cr concentration. The particle size and lattice parameters obtained from TEM and SAED images were in agreement with the XRD results. The absorption edge shifted to lower wavelengths with an increase in Cr concentration as per UV-Vis spectroscopy. The band gap energy values were in the range of 3.85-4.05 eV. This blueshift is attributed to the quantum confinement effect.  相似文献   

6.
We report the deposition of thin film of silver (Ag) nanoparticles by wet chemical method. The as-synthesized Ag nanoparticles have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy dispersive spectroscopy (EDS), field emission transmission electron microscopy (FETEM) and high-resolution TEM (HRTEM), UV-vis spectroscopy and thermogravimetric-differential thermal analysis (TG-DTA) respectively. FESEM image indicates that the silver film prepared on the quartz substrate is smooth and dense. XRD pattern reveals the face-centered cubic (fcc) structure of silver nanoparticles. EDS spectrum indicates that samples are nearly stoichiometric. From TEM analysis, it is found that the size of high purity Ag nanoparticles is ranging from 10 to 20 nm with slight agglomeration. Absorption in UV-vis region by these nanoparticles is characterized by the features reported in the literature, namely, a possible Plasmon peak at ∼403 nm. Optical absorbance spectra analysis reveals that the Ag film has an indirect band structure with bandgap energy 3.88 eV. TGA/DTA studies revealed that a considerable weight loss occurs between 175 and 275 °C; and the reaction is exothermic.  相似文献   

7.
An ultrasonic-assisted and environmentally favorable method is proposed for preparation of CdS nanoparticles in the presence of a halide-free and low-cost room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate, ([EMIM][EtSO4]). The prepared samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform-infrared (FT-IR). Diffuse reflectance spectra (DRS) of the products reveal a blue shift of 1.45 eV relative to bulk CdS, which can be attributed to the quantum confinement effect of the prepared nanoparticles. Investigation of photocatalytic activity for the CdS nanoparticles towards photodegradation of methylene blue (MB) demonstrates that photodegradation of MB increases with RTIL content of the media using visible and UV irradiations.  相似文献   

8.
Antimony-doped tin oxide (ATO) nanostructures were prepared using chemical precipitation technique starting from SnCl2, SbCl3 as precursor compounds. The antimony composition was varied from 5 to 20 wt%. The lower resistance was observed at composition of Sn:95 and Sb:05, when compared with undoped and higher doping concentration of antimony. The average crystalline size of undoped and doped tin oxide was calculated from the X-ray diffraction (XRD) pattern and found to be in the range of 30-11 nm and it was further confirmed from the transmission electron microscopy (TEM) studies. The scanning electron microscopy (SEM) analysis showed that the nanoparticles agglomerates forming spherical-shaped particles of few hundreds nanometers. The samples were further analyzed by energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrical resistance measurements.  相似文献   

9.
Monodispersed Mn2+ doped CdS nanoparticles with average size as small as 1.8 nm have been synthesized through chemical method. The nanostructures of the prepared nanoparticles have been confirmed through X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption and transmission electron microscope (TEM) measurements. The photoluminescence emission covering 450-650 nm of the visible region is observed under ultraviolet light excitation, from Mn2+ doped CdS nanoparticles dispersed in dimethyl sulfoxide (DMSO).  相似文献   

10.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

11.
ZnS:Cr (3 at.%) nanoparticles were synthesized by chemical co-precipitation method using EDTA as capping agent. The samples were annealed in air for 3 h in steps of 100 °C in the temperature range of 200–700 °C. The effect of annealing temperatures on the structural and photoluminescence properties of Cr doped ZnS nanoparticles was investigated using X-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDS), Diffuse Reflectance Spectra (DRS), Vibrating Sample Magnetometer (VSM) and Photoluminescence (PL) techniques. EDS spectra confirmed the presence of Cr in the samples with expected stoichiometry. XRD studies confirmed the formation of ZnO above 500 °C. Photoluminescence studies on ZnS:Cr nanoparticles indicated that the emission wavelength is tunable in the range of 440–675 nm as a function of annealing temperature. VSM results indicated a decrease in ferromagnetism with increase in annealing temperature, perhaps due to appreciable variation in structural defects that are sensitive to annealing temperature.  相似文献   

12.
Dendritic nanocrystalline CdS film was deposited at liquid-liquid interface of surfactants and an electrolyte containing 4 mmol L−1 cadmium chloride (CdCl2) and 16 mmol L−1 thioacetamide (CH3CSNH2) with an initial pH value of 5 at 15 °C by electrochemical synthesis. The nanofilm was characterized by transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), ultraviolet visible (UV-vis) absorption spectroscopy and fluorescence spectroscopy. The surface morphology and particle size of the nanofilm were investigated by AFM, SEM and TEM, and the crystalline size was 30-50 nm. The thickness of the nanofilm calculated by optical absorption spectrum was 80 nm. The microstructure and composition of the nanofilm was investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), showing its polycrystalline structure consisting of CdS and Cd. Optical properties of the nanofilm were investigated systematically by UV-vis absorption and fluorescence spectroscopy. A λonset blue shift compared with bulk CdS was observed in the absorption spectra. Fluorescence spectra of the nanofilm indicated that the CdS nanofilm emitted blue and green light. The nanocomposites film electrode will bring about anodic photocurrent during illumination, showing that the transfer of cavities produces photocurrent.  相似文献   

13.
Two kinds of vanadium-doped TiO2 powders photocatalysts were prepared by sol-gel method in even doping and uneven doping modes, and were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of TiO2 photocatalysts doped by vanadium evenly with lower dopant level up to 0.002 mol.% is better than that of undoped TiO2, while with higher dopant level the activity is worse. TiO2 photocatalysts doped by vanadium unevenly with a p-n junction semiconductor structure, was shown to have a much higher photocatalytic destruction rate than that of TiO2 photocatalysts doped by vanadium evenly and undoped TiO2, which is ascribed mainly to the electrostatic-field-driven electron-hole separation in TiO2 particles doped by vanadium unevenly.  相似文献   

14.
The present work reports a general, single step and easy solvothermal method to synthesize well crystallized and pure phase Ce3+ doped ZnSe nanocrystals for the first time in a unified system. The products were well characterized by powder X-ray diffraction (XRD), UV-vis spectroscopy (UV-vis), photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray diffraction (EDAX) and Raman spectroscopy. The products were found to show significant finite size effect as characterized by broadened XRD peaks, blue-shifts of the interband optical absorption edge and the asymmetric broadening of Raman spectra. The emission intensity of Ce3+ ion doped ZnSe was found to be considerably increased with respect to the pure one. The observed lineshape of LO modes indicates broadening that is due to the nanosized effect. The structure and properties were correlated and detailed growth mechanism is also discussed.  相似文献   

15.
The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).  相似文献   

16.
Nanocrystalline thin films of CdS have been grown onto flexible plastic and titanium substrates by a simple and environmentally benign chemical bath deposition (CBD) method at room temperature. The films consist of clusters of CdS nanoparticles. The clusters of CdS nanoparticles in the films were successfully converted into nanowire (NW) networks using chemical etching process. The possible mechanism of the etching phenomenon is discussed. These films were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectrophotometry techniques, respectively. Photoelectrochemical (PEC) investigations were carried out using cell configuration as n-CdS/(1 M NaOH + 1 M Na2S + 1 M S)/C. The film of nanowires was found to be hexagonal in structure with the preferential orientation along the (0 0 2) plane. The nanowires have widths in the range of 50-150 nm and have lengths of the order of a few micrometers. Optical studies reveal that the CdS nanowires have value of band gap 2.48 eV, whereas it is 2.58 eV for nanoparticles of CdS. Finally, we report on the ideality of junction improvement of PEC cells when CdS nanoparticles photoelectrode converted into nanowires photoelectrode.  相似文献   

17.
In the present study we have synthesized CdS semiconducting quantum dots by the chemical precipitation method using Thioglycerol as the capping agent. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) are employed to characterize the size, morphology and crystalline structure of the as-prepared material. The synthesized QPs have a mixture of cubical and hexagonal crystal symmetry with 12 nm average diameter. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and blue shift in absorption edge. Confinement of the optical phonon modes in the QPs is studied by Raman spectroscopy, while FTIR for identification of chemical bonds in the nanomaterial. Multiple cadmium and sulphur defects were observed by employing the photoluminescence (PL) method.  相似文献   

18.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

19.
Crystalline ZnO nanoparticles were synthesized by mechanochemical method. Mechanochemical processing involves the mechanical activation of solid-state displacement reactions at low temperatures in a ball mill. Statistical design was used to investigate the effect of main parameters (i.e. time, milling rate and calcination temperature) on ZnO crystallite size and morphology. After annealing at 400 °C in air, zinc oxide (ZnO) nanoparticles were obtained. The milled powders are analyzed by X-ray diffraction (XRD), TG/DTA and transmission electron microscope (TEM).The crystallite size of ZnO samples calculated from XRD is consistent with the TEM images and estimated to be less than 20 nm. The optical properties of the samples were studied by UV-vis spectrophotometer.  相似文献   

20.
Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH2)2) and thioacetamide (C2H5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号