首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination system of thermogravimetric/differential thermal analysis (TG-DTA) and Fourier-transform infrared absorption spectroscopy (FT-IR) was described. This simultaneous TG-DTA/FT-IR technique gave spectroscopic and weight loss information about the thermal degradation process of engineering polyesters; poly(ethylene terephthalate)(PET) and poly(butylene terephthalate)(PBT). The evolved gases from PET were benzoic acid, carbon dioxide and carbon monoxide, while those from PBT were terephthalic acid esters and benzoic acid esters.
Zusammenfassung Es wird ein kombiniertes System aus TG-DTA und FT-IR beschrieben. Mit dieser simultanen TG-DTA/FT-IR-Technik wurden spektroskopische und Massenverlustangaben über die thermische Zersetzung technisch wichtiger Polyester, namentlich von Poly(ethylenterephthalat) (PET) und Poly(Butylenterephthalat) (PBT) ermittelt. Die aus PET freigesetzten Gase waren Benzoesäure, Kohlendioxid und Kohlenmonoxid, die aus PBT freigesetzten Gase hingegen Terephthalsäureester und Benzoesäureester.
  相似文献   

2.
Typical terephthalate polyesters such as poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) were characterized by pyrolysis-gas chromatography (Py-GC) in the presence of tetramethylammonium hydroxide in terms of the cross-linking structure formed during their material recycling. In the pyrograms of PBT and PET thermally treated at 270 °C for 1 h, which were prepared as model polymers containing cross-linking structures, an additional peak was commonly observed as well as the main reactive pyrolysis products for the original polyesters such as dimethyl terephthalate. Based on the observed spectra obtained by Py-GC/mass spectrometry and Py-GC/Fourier transform infrared spectrometry measurements, this peak was assigned to the product reflecting a biphenyl-type cross-linking structure. Furthermore, in the pyrograms of kneaded PBT and PET samples also at 270 °C for a total of 1 h, which were prepared to simulate material recycling, the same peak for the cross-linking structure was also observed, although its intensity was slightly lower than that in the samples thermally treated in air. This fact verified that the biphenyl-type cross-linking structure would be considerably formed during the recycling of PBT and PET, which might in turn contribute to the deteriorated properties of the recycled materials from waste polyesters. Moreover, difference in the formation of the cross-linking between PBT and PET is discussed on the basis of the observed results.  相似文献   

3.
Random copolyesters of dimethyl terephthalate (DMT), ethylene glycol (EG), and butane-1,4-diol (BD) and the homopolyesters poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) have been subjected to degradation and pyrolysis studies. Differential thermal analysis (DTA) showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. Thermal volatilization analysis (TVA) also showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. The trend for the decomposition temperatures obtained from TVA studies for these copolyesters is similar to such other thermal properties as melting temperature Tm, ΔHf, ΔHc, etc. The subambient thermal volatilization analysis (SATVA) curves obtained for these polymers are also presented. The SATVA curve is the fingerprint of the total volatile products formed during the degradation in high vacuum. The isothermal pyrolysis of these materials was carried out in high vacuum at 450°C. The products formed were separated in a gas chromatograph and were subsequently identified in a mass spectrometer. The major pyrolysis products from PBT were butadiene and tetrahydrofuran, whereas those from PET were ethylene and acetaldehyde. The ratio of acetaldehyde to ethylene increases with the EG content in the copolyester, suggesting a different decomposition mechanism compared to the decomposition mechanism of PBT and PET.  相似文献   

4.
Detailed results of the overall thermal degradation of poly(butylene terephthalate) are reported. Laser microprobe analysis and dynamic mass spectrometric techniques were used to identify the primary volatile degradation products and initial pyrolysis reactions that control polymer degradation. A complex multistage decomposition mechanism was observed which involves two major reaction pathways. Initial degradation occurs by an ionic decomposition process that results in the evolution of tetrahydrofuran. This is followed by concerted ester pyrolysis reactions that involve an intermediate cyclic transition state and yield 1,3-butadiene. Simultaneous decarboxylation reactions occur in both decomposition regimes. Finally, the latter stages of polymer decomposition were characterized by evolution of CO and complex aromatic species such as toluene, benzoic acid, and terephthalic acid. Activation energies of formation for the main pyrolysis products were determined from the dynamic measurements of the major ion species and indicate values of E = 27.9 kcal/mole for the production of tetrahydrofuran and E = 49.7 kcal/mole for the production of butadiene.  相似文献   

5.
Two new diglycidyl ester compounds containing preformed imide rings for better thermal stability were prepared to be used as chain extenders for PET and PBT. The preparation of these compounds was carried out in two steps. In the first step, diimidodiacids were prepared from pyromellitic anhydride and 3-aminopropanoic acid or 4-(aminomethyl)benzoic acid. From these diimidoacids, in a second step, diimidodiepoxides were obtained by reaction with epichlorohydrin. The aforementioned diimidodiepoxides were used as chain extenders for poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) with satisfactory results. The polyester samples obtained from various residence times in the reactor, were characterized by solution viscosity measurements, carboxyl, and hydroxyl end-group determination. Starting from a PET having intrinsic viscosity ([η]) of 0.60 dL/g and carboxyl content (CC) of 42 equiv/106 g, one could obtain PET with [η] of 1.16 and CC below 5 equiv/106 g. The typical reaction condition for the coupling of PET was its heating with the chain extender under argon atmosphere above its melting temperature (280°C) for several minutes. Analogous results were obtained for PBT. The hydroxyl content in all cases was increased. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A library of random poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and seven PET–PTT copolymers has been prepared in a high throughput manner by entropically‐driven ring‐opening polymerizations of the corresponding macrocyclic oligomers. The products have been investigated by differential scanning calorimetry and wide angle X‐ray diffraction. They show that the 50:50 copolymer displays a crystalline phase. The same phase can be formed by in situ transesterification when a 50:50 mixture of PET and PTT is melt blended. Poly(butylene terephthalate) (PBT)–PET and PTT–PBT 50:50 copolymers also show crystal phases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
一种新的绝缘膜——聚对苯二甲酸对氧代苯甲酸乙二酯   总被引:1,自引:0,他引:1  
聚对苯二甲酸乙二酯(匹T)膜已广泛用于绝缘和包装行业,其耐热温度不超过12O℃,熔点较高(260“C),结晶速率较快,难以拉制成电机槽绝缘和相绝缘所需厚度大于020mm的柔软薄膜.在PET的分子链中引人4,4’一氧代二次苯基能降低共聚酯的熔点[’j,但对共聚酯的热稳定性和结晶速率有无影响未曾提及.我们以4,4’一二苯醚二甲酸(OBBA)为改性组分,合成了一系列聚对苯二甲酸对氧代苯甲酸乙二酯(PETO)并制成薄膜,该膜不仅比PET膜的熔点低,结晶速率慢,而且热稳定性也有所提高,有可能制得0.2mm厚的薄膜.1实验部分1.l原料对…  相似文献   

8.
The thermal degradation mechanisms of liquid crystalline aromatic polyesters (LCPs) prepared from p-hydroxybenzoic acid (PHB), biphenol (BP), and terephthalic acid (TA) were studied by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The LCP containing deuterated terephthalate units and the LCPs that have different comonomer ratios were examined. On the basis of the pyrolysis products determined, the origin of the main pyrolysis products (benzene, phenol, biphenyl, phenyl benzoate, etc.) from the corresponding comonomer units were estimated and their thermal degradation mechanisms were eventually discussed in detail.  相似文献   

9.
The hydrolytic degradation of technical poly(ethylene terephthalate) (PET) was investigated by means of different methods such as size-exclusion chromatography (SEC), viscometry, light-scattering, thin-layer chromatography, end-group titration, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The long-term degradation was simulated by exposing PET filament yarns to aqueous neutral conditions at 90°C for up to 18 weeks. By means of MALDI-MS and thin-layer chromatography, the formation of different oligomers was obtained during polymer degradation. As expected, an ester scission process was found generating acid terminated oligomers (H-[GT]m-OH) and T-[GT]m-OH and ethylene glycol terminated oligomers (H-[GT]m-G), where G is an ethylene glycol unit and T is a terephthalic acid unit. Additionally, the scission of the ester bonds during the chemical treatment led to a strong decrease in the number of cyclic oligomers ([GT]m). The occurrence of di-acid terminated species demonstrated a high degree of degradation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2183–2192, 1997  相似文献   

10.
Thermochemolysis-gas chromatography in the presence of tetramethylammonium acetate was applied to the direct determination of terephthalic acid (TPA) contained in solid decomposition products obtained from the hydrothermal recycling process of poly(ethylene terephthalate) (PET). On the chromatograms of the hydrothermal decomposition products of PET, a sharp peak of the TPA component was clearly observed as its corresponding dimethyl ester formed through the thermochemolysis reaction. Based on the peak intensities, the contents of TPA in the decomposition products were determined precisely and rapidly without using any cumbersome sample pretreatments.  相似文献   

11.
Block copolymers of two crystallizable compounds, poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), were developed with PET as the major component and the amount of PBT varying from 1.0 to 20.0 wt %. These block copolymers were prepared by end-group coupling of preformed oligomers. All polymers prepared were of equivalent molecular weight as determined by the intrinsic viscosity method. Thermal properties were determined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). With increasing PBT content, the block copolymers showed a general decrease in the values of glass transition temperature, melting temperature, initial decomposition temperature, and maximum decomposition temperature. The heat of fusion and heat of crystallization first increased and then decreased slightly. Rates of crystallization were determined by measuring density as a function of time of isothermal crystallization carried out at 95°C. It was found that small amounts of PBT increased the crystallization rate considerably over that of PET. Random copolymers did not show this phenomenon and behaved more like pure PET. The crystallization behavior of block copolymers was analyzed by the Avrami equation and Avrami exponents were determined. Results were explained on the basis that the faster-crystallizing PBT blocks crystallized first and provided built-in nucleation sites for the subsequent crystallization of PET, thus resulting in a relatively fast-crystallizing copolyester.  相似文献   

12.
Liquid crystalline polymer–poly(butylene terephthalate) (LCP/PBT) blends were prepared by melt mixing. The LCP employed was a thermotropic copolyesteramide based on 30 mol % of p‐amino benzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The thermal, dynamic mechanical and rheological properties, morphology, and crystal structure of LCP/PBT blends were studied. The results showed that the semiflexible ABA30/PET LCP is miscible in the melt state with PBT, and they are partial miscible in the solid state. Differential scanning calorimetric measurements showed that the introduction of the semiflexible LCP into LCP/PBT blends retards the crystallization rate of PBT. However, the LCP dispersed phase acted as the sites for the nucleation of spherulites and enhance the degree of crystallinity of PBT. Hot‐stage optical microscopy examination revealed that the LCP microfibers with random orientation are dispersed in the PBT matrix of compression molded LCP/PBT blends. Under the application of a shearing force, the LCP domains in the PBT matrix tended to deform into microfibers, and to orient themselves along the flow direction. The formation of microfibers resulted in an increase of the storage modulus. The torque measurements indicated that the melting viscosity of the LCP/PBT blends is much lower than that of the pure PBT. Finally, the wide‐angle X‐ray diffraction patterns indicated that PBT shows no structural change with the incorporation of LCP, but the apparent crystal sizes of several diffraction planes change significantly. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 403–414, 2000  相似文献   

13.
用高效凝胶色谱和反相高效液相色谱测定了聚对苯二甲酸乙二酯齐聚物、聚对苯二甲酸丁二酯齐聚物的聚合度分布与平均聚合度,获得了满意的结果。同时,比较了这两种分析测试方法的优缺点。  相似文献   

14.
Structural studies of a synthetic melanin, obtained by means of performic acid oxidation of tryptophan, were carried out by pyrolysis gas chromatography/mass Spectrometry (Py-GC/MS). To identify the best pyrolysis conditions, both Curie-point pyrolysis and filament pyrolysis were employed and the effects of pyrolysis temperatures and times were studied. Using the first approach, various compounds were identified: toluene, ethylbenzene, styrene, indole, methylindole, ethylindole, phenol, cresol and ethylphenol. Using filament pyrolysis some interesting differences could be observed. Whereas toluene, ethylbenzene, phenol, cresol and methylindole were found, neither indole nor ethylindole was detected. Instead, new pyrolysis products were evident, such as methylpyrrole and indolin-2-one. Hence filament pyrolysis seems to activate different thermal decomposition pathways of the melanin under study. It is suggested that tryptophan melanin is a polymer containing indole and hydroxyindole derivatives as subunits.  相似文献   

15.
The aim of this work is to discriminate thermoplastic polyester-polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT), which cannot be easily identified by many methods. Both matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were applied to identify these polyesters owing to their analytical ability to determining polymers' chemical structure. The three thermoplastic polyesters can be easily distinguished by MALDI-TOF MS according to their different repeated units. Py-GC/MS was used to analyze their specific pyrolyzates. The three polyesters can be identified through their characteristic pyrolysis products as well.  相似文献   

16.
Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The thermal decomposition of various mixtures of acrylonitrile butadiene styrene copolymer (ABS), ABS containing brominated epoxy resin flame retardant and Sb2O3, poly(ethylene terephthalate) (PET) and poly(vinyl chloride) (PVC) has been studied in order to clarify the reactions between the components of mixed polymers. More than 40 halogen-containing molecules have been identified among the pyrolysis products of mixed samples. Brominated and chlorinated aromatic esters were detected from the mixtures containing PET and halogen-containing polymers. A series of chlorinated, brominated and mixed chlorinated and brominated phenols and bisphenol A molecules have been identified among the pyrolysis products of polymer mixtures containing flame retarded ABS and PVC. It was established that the decomposition rate curves (DTG) of the mixtures were not simple superpositions of the individual components indicating interactions between the decomposition reactions of the polymer components. The maximal rate of thermal decomposition of both ABS and PET decreases significantly if the mixture contains brominated epoxy flame retardant and Sb2O3 synergist. The dehydrochlorination rate of PVC is enhanced in the presence of ABS or PET.  相似文献   

18.
Triphenylphosphine and poly(ethylene terephthalate) react at 370°C to produce ethylene, triphenylphosphine oxide, carbon dioxide, benzoic acid, and terephthalic acid. The reaction proceeds by the initial formation of a zwitterionic species which then generates a phosphonium ylid and leads to the observed products. Any flame retardant activity from the use of triphenyl-phosphine may be attributed to the formation of triphenylphosphine oxide. The co-production of ethylene renders triphenylphosphine a less effective flame retardant than triphenylphosphine oxide.  相似文献   

19.
The blend system composed of PET and thermotropic liquid crystal copolyester based on hydroxy benzoic acid, terephthalic acid, diacetylnaphthalene and PET was studied. The results indicated that LCP could play the role of crystal nuclei. The introduction of LCP decreased the melt viscosity of the system and fibrillous structure could be formed in favor conditions.  相似文献   

20.
Blends of poly (butylene terephthalate) (PBT) and a liquid-crystalline copolyester (60 mol % poly(p-hydroxy benzoic acid)/40 mol % polyethylene terephthalate) (LCP) were prepared in the melt state. The investigation of mechanical properties indicated that, for the processing conditions used, neither the addition of up to 30 wt % LCP to PBT nor the cooling history affected significantly the tensile modulus E. For oriented specimens, a marked improvement of E was obtained for all the blends, and increased with the LCP content. This improvement was more marked for slowly cooled samples. X-ray diffraction was used to quantify the orientation of the crystalline PBT and liquid-crystalline LCP phases. It was shown that neither the thermal history nor the presence of up to 30 wt % LCP affected the orientation behavior of the PBT crystalline phase. For the LCP phase, measurements were not possible for concentrations lower than 10 wt %, and were more difficult and less precise than for PBT. Nevertheless, it was possible to show that a better orientation was obtained for the slowly cooled samples and for higher concentrations of LCP in the blends. This correlated with the enhancement of mechanical properties observed for the oriented samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号