首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.  相似文献   

2.
Photoluminescence, capacitance-voltage and transmission electron microscopy studies have been carried out on structures containing a sheet of a self-assembled InAs quantum dots formed in GaAs matrices after the deposition of a 1.7 ML of InAs at 480°C. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the capacitance-voltage technique. From analysis of photoluminescence and capacitance-voltage measurements it follows that the quantum dots have electron levels 80 meV below the bottom of the GaAs conduction band and two heavy-hole levels at 100 meV and 170 meV above the top of the GaAs valence band.  相似文献   

3.
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined.  相似文献   

4.
We identify fundamental mechanisms of electron and hole dynamics in self-organized InAs/GaAs quantum dots (QDs) subject to vertical electric fields by photocurrent investigations. We propose a spin–flip mechanism involving a spin exchange between neighboring QDs. The spin–flip process is revealed in the photocurrent dynamics when the exciton population increases unexpectedly with reverse bias.  相似文献   

5.
Reflection high-energy electron diffraction (RHEED) and atomic force microscopy (AFM) measurements were used to investigate the dependences of the formation process and the strain on the As/In ratio and the substrate temperature of InAs quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. The thickness of the InAs wetting layer and the shape and the size of the InAs QDs were significantly affected by the As/In ratio and the substrate temperature. The strains in the InAs layer and the GaAs substrate were studied by using RHEED patterns. The magnitude in strain of the InAs QDs formed at a low substrate temperature was larger than that in InAs QDs grown at high substrate temperature. The present results can help to improve the understanding of the formation process and the strain effect in InAs QDs.  相似文献   

6.
InGaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs from the GaAs is reduced due to the tensile strain induced by the InGaAsSb SRL, because the lattice constant of InGaAsSb is closer to InAs lattice constant than that of GaAs, resulting in a significant red shift of photoluminescence peaks of the InAs QDs. The emission wavelength from InAs QDs can be controlled by changing the Sb composition of the InGaAsSb SRL. The 1.5 μm band emissions were achieved in the sample with an InGaAsSb SRL whose Sb compositions were above 0.3. The calculation of the electron and the hole wave functions using the transfer matrix method indicates that the electron and the hole were localized around InAs QDs and InGaAsSb SRL.  相似文献   

7.
The nature of the confined electronic states in InAs/GaAs self-assembled quantum dots is studied using photocurrent spectroscopy measured as a function of applied electric field. A field asymmetry of the quantum confined Stark effect is observed, consistent with the dots possessing a permanent dipole moment. The sign of this dipole indicates that for zero field the hole wave function lies above that of the electron, in disagreement with the predictions of all recent calculations. Comparison with a theoretical model demonstrates that the experimentally determined alignment of the electron and hole can only be explained if the dots contain a non-zero and non-uniform Ga content.  相似文献   

8.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

9.
An array of non-overgrown InAs/GaAs quantum dots has been decorated with adsorbed metal atoms in situ in ultrahigh vacuum. Their electron and photoemission properties have been studied. The radical modification of the spectra of the threshold emission from the quantum dots with increasing cesium coating has been found. Two photoemission channels have been established; they are characterized by considerably different intensities, spectral locations, and widths of the selective bands. It has been shown that the decoration of the quantum dots makes it possible to control the electronic structure and quantum yield of photoemission, the nature of which is related to the excitation of the electronic states of the GaAs substrate and InAs/GaAs quantum dots.  相似文献   

10.
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.  相似文献   

11.
We have studied single electron and hole storage in self-assembled InAs quantum dots (QDs) embedded in GaAs/n-AlGaAs field effect transistors (QD-FETs). We prepared two types of QD-FETs. A single electron and a photo-generated single hole can be stored in each QD in Type 1. In the new Type II, single-electron discharge processes can be controlled by a surface gate voltage (Vg) as well as single-electron storage processes. We demonstrate possible application to novel photo devices and quantum dot memory devices.  相似文献   

12.
Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of InxGa1-xAs cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.  相似文献   

13.
We calculated the photoluminescence spectra of charged magneto-excitons in single two-dimensional parabolic quantum dots, using an unrestricted Hartree–Fock method. The calculated luminescence spectra explain well the observed red shifts of transition energies of InAs/GaAs single quantum dot by additional electron capture in a dot. The magnetic-field-induced transition of the ground state configuration of trapped electrons causes drastic change in the photoluminescence spectra. The dependence of photoluminescence intensities of charged excitons on the excess energies of photogenerated carriers above the bulk GaAs energy gap is studied phenomenologically, by calculating the steady state electron population probability in a dot.  相似文献   

14.
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80 K under pulsed and continuous wave excitations. At temperature 8OK, the second-order correlation function at zero time delay, g^(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.  相似文献   

15.
Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAs/GaAs quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in Q Ds decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.  相似文献   

16.
A model describing the emission of photoexcited electrons and holes from an array of InAs quantum dots into the GaAs matrix is suggested. The analytical expression obtained for the emission efficiency takes into account the thermal emission of charge carriers into the GaAs matrix and two-dimensional states of the InAs wetting layer, tunneling and thermally activated tunneling escape, and electron transitions between the quantum-confinement levels in the conduction band of InAs. The temperature dependences of the photosensitivity in the regions of the ground-state and first excited-state optical transitions in InAs/GaAs quantum dots grown by gas-phase epitaxy are investigated experimentally. A number of quantum dot parameters are determined by fitting the results of a theoretical calculation to the experimental data. Good agreement between the theoretical and experimental results is obtained in this way.  相似文献   

17.
We report on photoluminescence measurements of vertically stacked InAs/GaAs quantum dots grown by molecular beam epitaxy on focused ion beam patterned hole arrays with varying array spacing. Quantum dot emission at 1.24 eV was observed only on patterned regions, demonstrating preferential nucleation of optically active dots at desired locations and below the critical thickness for dot formation at these growth conditions. Photoluminescence measurements as a function of varying focused ion beam irradiated hole spacing showed that the quantum dot emission intensity increased with decreasing array periodicity, consistent with increasing dot density.  相似文献   

18.
The electron energy levels, direct energy band gaps, electron and hole effective masses as well as the transverse effective charge of InAs spherically shaped quantum dots have been studied as a function of the quantum dot radius considered as varying from 1 to 10 nm. The direct energy band-gap as well as the electron and heavy hole effective masses decrease non-linearly with increasing the quantum dot radius. Nevertheless, the transverse effective charge is found to increase with increasing the quantum dot radius. It is concluded that the quantum confinement has a strong influence on all the studied physical quantities for quantum dot radius below 6 nm. The results of the present contribution show that more opportunities can be offered to tailor desired optoelectronic properties surpassing those presented by bulk InAs materials.  相似文献   

19.
The effect of thermal annealing on self-assembled uncapped InAs/GaAs quantum dots (QDs) has been investigated using transmission electron microscopy (TEM) and photoluminescence (PL) measurements. The TEM images showed that the lateral sizes and densities of the InAs QDs were not changed significantly up to 650 °C. When the InAs/GaAs QDs were annealed at 700 °C, while the lateral size of the InAs QDs increased, their density decreased. The InAs QDs disappeared at 800 °C. PL spectra showed that the peaks corresponding to the interband transitions of the InAs QDs shifted slightly toward the high-energy side, and the PL intensity decreased with increasing annealing temperature. These results indicate that the microstructural and the optical properties of self-assembled uncapped InAs/GaAs can be modified due to postgrowth thermal annealing.  相似文献   

20.
We present a numerical calculation of many-exciton complexes in self-assembled InAs/GaAs quantum dots. We apply continuum elasticity theory and atomistic valence-force-field method to calculate strain distribution, and make use of various methods, ranging from a quasi-atomistic tight-binding approach to the single-band effective-mass approximation, to obtain single-particle energy levels. The effect of strain is incorporated by the deformation potential theory. We expand multiexciton states in the basis of Slater determinants and solve the many-body problem by the configuration-interaction method. The dynamics of multiexcitons is studied by solving the rate equations, from which the excitation–power dependence of emission spectrum is obtained. The emission spectra calculated by the microscopic tight-binding approach are found to be in good agreement with those obtained by the simple effective-mass method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号