首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the Lyapunov stability theory and LMI technique, a new sufficient criterion, formulated in the LMI form, is established in this paper for chaos robust synchronization by linear-state-feedback approach for a class of uncertain chaotic systems with different parameters perturbation and different external disturbances on both master system and slave system. The new sufficient criterion can guarantee that the slave system will robustly synchronize to the master system at an exponential convergence rate. Meanwhile, we also provide a criterion to find out proper feedback gain matrix KK that is still a pending problem in literature [H. Zhang, X.K. Ma, Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos, Solitons and Fractals 21 (2004) 39–47]. Finally, the effectiveness of the two criteria proposed herein is verified and illustrated by the chaotic Murali–Lakshmanan–Chua system and Lorenz systems, respectively.  相似文献   

2.
This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach.  相似文献   

3.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

4.
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.  相似文献   

5.
6.
针对时变的满足一定匹配条件的不确定关联时滞大系统,利用自适应界化技术,给出了设计分散镇定控制器的自适应的方法.其特点是在假设中系统不确定项是有界的,但界是未知的,且在关联项存在时变时滞的情况下证明了闭环自适应系统的渐近稳定性.最后举例说明了该方法的有效性.  相似文献   

7.
In this paper, a robust adaptive control law for a class of uncertain nonlinear systems is proposed. The proposed controller guarantees asymptotic output tracking of systems in the strict-feedback form with unknown static parameters, and matched and unmatched dynamic uncertainties. This controller takes advantages of a robust stability property of the Lyapunov redesign method and a systematic design procedure of the backstepping technique. In fact, the backstepping technique is employed to enrich the Lyapunov redesign method to compensate for not only matched - but also unmatched-uncertainties. On the other hand, using the Lyapunov redesign method in each step of the conventional backstepping technique makes backstepping robust. The suggested controller is designed through repeatedly utilizing the Lyapunov redesign method in each step of the backstepping technique. Simulation results reveal the efficiency of the Lyapunov redesign-based backstepping controller.  相似文献   

8.
This paper investigates robust finite-time stabilization of a class of uncertain chaotic systems. A new terminal sliding mode (TSM) algorithm is proposed to steer the plant fast to zero within finite time. In particular, a new form of TSM is developed for multi-input and multi-output systems, and some criteria are presented to facilitate its control design. With adaption laws to identify uncertain parameters and unknown bounds on disturbances, the proposed terminal sliding mode controllers get rid of uncertainties and nonlinearities successfully. The closed-loop systems are provided with fast finite-time stability and strong robustness against uncertainties. Finally, numerical simulation of Lorenz system illustrates the effectiveness of this proposed control scheme.  相似文献   

9.
一类非线性系统的自适应反步控制   总被引:2,自引:0,他引:2  
研究一类带有未知常数参量的非线性系统的镇定及自适应控制器设计问题,提出了一类非线性系统参数估计器设计及自适应反步控制器设计的新方法.构造出Lyapunov函数, 并给出闭环系统全局渐近稳定的新的充分条件.例子表明了所获方法的有效性.  相似文献   

10.
In this paper, the design problem of dynamic output feedback controller for asymptotic stabilization of a class of neutral systems have been considered. A criterion for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the controllers is given in terms of the feasible solutions to the LMIs, which can be solved by various convex optimization algorithms. A numerical example is given to illustrate the proposed design method.  相似文献   

11.
In this paper, an approach for adaptive synchronization of uncertain chaotic systems is proposed using adaptive backstepping with tuning functions. Strong properties of global stability and asymptotic synchronization can be achieved. The proposed approach offers a systematic design procedure for adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Simulation results are presented to show the effectiveness of the approach.  相似文献   

12.
Runzi Luo  Yanhui Zeng 《Complexity》2016,21(Z1):573-583
This article addresses the adaptive control of chaotic systems with unknown parameters, model uncertainties, and external disturbance. We first investigate the control of a class of chaotic systems and then discuss the control of general chaotic systems. Based on the backstepping‐like procedure, some novel criteria are proposed via adaptive control scheme. As an example to illustrate the application of the proposed method, the control and synchronization of the modified Chua's chaotic system is also investigated via a single input. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed approach. © 2016 Wiley Periodicals, Inc. Complexity 21: 573–583, 2016  相似文献   

13.
In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua’s circuit.  相似文献   

14.
In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.  相似文献   

15.
In this paper, a new fractional‐order chaotic system and an adaptive synchronization of fractional‐order chaotic system are proposed. Parameters adaption laws are obtained to design adaptive controllers using Lyapunov stability theory of fractional‐order system. Finally, reliability of designed controllers and risk analysis of adaptive synchronization problem are formulated and, risk of using the proposed controllers in presences of external disturbances are demonstrated. Also, risk of controllers are reduced using an optimizing method. Numerical examples are used to verify the performance of the proposed controllers.  相似文献   

16.
In this paper the control of discrete chaotic systems by designing linear feedback controllers is presented. The linear feedback control problem for nonlinear systems has been formulated under the viewpoint of dynamic programming. For suppressing chaos with minimum control effort, the system is stabilized on its first order unstable fixed point (UFP). The presented method also could be employed to make any desired nth order fixed point of the system, stable. Two different methods for higher order UFPs stabilization are suggested. Afterwards, these methods are applied to two well-known chaotic discrete systems: the Logistic and the Henon Maps. For each of them, the first and second UFPs in their chaotic regions are stabilized and simulation results are provided for the demonstration of performance.  相似文献   

17.
Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015  相似文献   

18.
This works is concerned with the finite-time optimal stabilization problem for a class of switched non-strict-feedback nonlinear systems whose powers are possibly different positive odd rational numbers in the sense the powers of each subsystem might differ from others. It is well known that high-order nonlinear systems are intrinsically challenging as feedback linearization and backstepping method successfully developed for low-order systems fail to work. To this purpose, the nested saturation homogeneous controller is constructively devised to achieve global finite-time stability. Furthermore, the corresponding design parameters are optimized by minimizing a well-defined cost function, and thus an optimal controller being independent of switching signals is obtained. Simulation results are eventually provided to validate the effectiveness of the proposed control scheme.  相似文献   

19.
This paper is concerned with the robust stabilization problem for a class of linear uncertain stochastic systems with Markovian switching. The uncertain stochastic system with Markovian switching under consideration involves parameter uncertainties both in the system matrices and in the mode transition rates matrix. New criteria for testing the robust stability of such systems are established in terms of bi-linear matrix inequalities (BLMIs), and sufficient conditions are proposed for the design of robust state-feedback controllers. A numerical example is given to illustrate the effectiveness of our results.  相似文献   

20.
一类二维Markov跳跃非线性时滞系统的镇定控制   总被引:1,自引:0,他引:1  
研究一类二维Markov跳跃非线性时滞系统的镇定控制问题.给出了Markov跳跃非线性时滞系统解的存在唯一性的一个充分条件,以及系统依概率全局渐近稳定的判别准则.通过构造适当形式的Lyapunov函数,采用积分反推方法给出了一类二维Markov跳跃非线性时滞系统的无记忆状态反馈控制器.证明了在该控制律的作用下,闭环系统平衡点依概率全局渐近稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号