首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

2.
The single input linear feedback control for synchronizing two identical new 3D chaotic flows reported by Li et al. [X.F. Li, K.E. Chlouverakis, D.L. Xu, Nonlinear dynamics and circuit realization of a new chaotic flow: a variant of Lorenz, Chen and Lü, Nonlinear Analysis RWA 10 (4) (2009) 2357-2368] is proposed in this paper. Sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical chaotic systems with unknown parameters is also studied. Based on the Lyapunov stability theory, two kinds of single input adaptive synchronization controllers are designed and the adaptive parameter update laws are developed.  相似文献   

3.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

4.
This paper addresses the problem of adaptive stabilization of uncertain unified chaotic systems with nonlinear input in the sector form. A novel representation of nonlinear input function, that is, a linear input with bounded time-varying coefficient, is firstly established. Then, an adaptive control scheme is proposed based on the new nonlinear input model. By using Barbalat’s lemma, the asymptotic stability of the closed-loop system is proved in spite of system uncertainties, external disturbance and input nonlinearity. One of the advantages of the proposed design method is that the prior knowledge on the plant parameter, the bound parameters of the uncertainties and the slope parameters inside the sector nonlinearity is not required. Finally, numerical simulations are performed to verify the analytical results.  相似文献   

5.
This article addresses the synchronization of nonlinear master–slave systems under input time‐delay and slope‐restricted input nonlinearity. The input nonlinearity is transformed into linear time‐varying parameters belonging to a known range. Using the linear parameter varying (LPV) approach, applying the information of delay range, using the triple‐integral‐based Lyapunov–Krasovskii functional and utilizing the bounds on nonlinear dynamics of the nonlinear systems, nonlinear matrix inequalities for designing a simple delay‐range‐dependent state feedback control for synchronization of the drive and response systems is derived. The proposed controller synthesis condition is transformed into an equivalent but relatively simple criterion that can be solved through a recursive linear matrix inequality based approach by application of cone complementary linearization algorithm. In contrast to the conventional adaptive approaches, the proposed approach is simple in design and implementation and is capable to synchronize nonlinear oscillators under input delays in addition to the slope‐restricted nonlinearity. Further, time‐delays are treated using an advanced delay‐range‐dependent approach, which is adequate to synchronize nonlinear systems with either higher or lower delays. Furthermore, the resultant approach is applicable to the input nonlinearity, without using any adaptation law, owing to the utilization of LPV approach. A numerical example is worked out, demonstrating effectiveness of the proposed methodology in synchronization of two chaotic gyro systems. © 2015 Wiley Periodicals, Inc. Complexity 21: 220–233, 2016  相似文献   

6.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

7.
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.  相似文献   

8.
This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.  相似文献   

9.
In this paper, an adaptive controller is designed to ensure robust synchronization of two different chaotic systems with input nonlinearities. For this purpose, a stable sliding surface is defined and an adaptive sliding mode controller is designed to achieve robust synchronization of the systems when the control input is influenced through nonlinearities produced by actuator or external uncertainty recourses. The adaptation law guarantees the synchronization assuming of unknown model uncertainty. Furthermore by adding an integrator and incorporating a saturation function in the control law, the chattering phenomenon caused by the sign function is avoided. The simulation results for synchronization of Chua’s circuit and Genesio systems show the efficiency of the proposed technique.  相似文献   

10.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

11.
This work presents the synchronization between two different chaotic systems by using an adaptive feedback control scheme. The adaptive synchronization problem between an electrostatic system and electromechanical transducer has been investigated. An adaptive linear feedback law with two controllers is proposed to ensure the global chaos synchronization of the nonlinear electrostatic and electromechanical systems. Numerical simulations results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

12.
This paper investigates the adaptive synchronization in the drive-response fractional-order dynamical networks with uncertain parameters. By means of both the stability theory of fractional-order differential system and the adaptive control technique, a novel adaptive synchronization controller is developed with a more general and simpler analytical expression, which does not contain the parameters of the complex network, and effective adaptive laws of parameters. Furthermore, the very strong and conservative uniformly Lipschitz condition on the node dynamics of complex network is released. To demonstrate the validity of the proposed method, the examples for the synchronization of systems with the chaotic and hyper-chaotic node dynamics are presented.  相似文献   

13.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

14.
Many works on hybrid projective synchronization (or simply ‘HPS’ for short) of nonlinear real dynamic systems have been performed, while the HPS of chaotic complex systems and its application have not been extensively studied. In this paper, the HPS of complex Duffing–Holmes oscillators with known and unknown parameters is separately investigated via nonlinear control. The adaptive control methods and explicit expressions are derived for controllers and parameters estimation law, which are respectively used to achieve HPS. These expressions on controllers are tested numerically, which are in excellent agreement with theory analysis. The proposed synchronization scheme is applied to image encryption with exclusive or (or simply ‘XOR’ for short). The related security analysis shows the high security of the encryption scheme. Concerning the complex Duffing–Holmes oscillator, we also discuss its chaotic properties via the maximum Lyapunov exponent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This work investigates the adaptive Q–S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q–S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q–S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of adaptive synchronization between two nearly identical chaotic and hyper-chaotic systems with uncertain parameters is studied. Based on Lyapunov stability theory, a novel adaptive synchronization controller is designed, and the analytic expression of the controller and the adaptive laws of parameters are developed. The controller is simple and systemic, no parameters of the slave system are included in the controller, and, for some specific error systems, the controller can be simplified ulteriorly. New chaotic and a new hyper-chaotic systems with uncertain parameters are taken as the examples to show the effectiveness of the proposed adaptive synchronization method.  相似文献   

17.
The work of Yassen [M.T. Yassen, Chaos control of chaotic dynamical systems using backstepping design, Chaos Soliton Fract. 27 (2006) 537–548] which mainly investigated the stabilization problem for a class of chaotic systems without the parameters perturbation. This paper is concerned with stabilization problem for a class of parameters perturbation chaotic systems via both backstepping design method and adaptive technique. The proposed controllers can guarantee that the parameters perturbation systems will be stabilized at a fixed bounded point. Furthermore, the paper also proposes controllers to stabilize the uncertain chaotic system at equilibrium point with only backstepping design method. Finally, numerical simulations are given to illustrate the effectiveness of the proposed controllers.  相似文献   

18.
This paper proposes two novel adaptive variable structure tracking controllers for a large class of chaotic systems with unknown dynamics in presence of both external disturbances and input nonlinearities. The pros and cons of each proposed methodology is also represented. In order to eliminate the chattering effect in the former controlled system, two corresponding fuzzy adaptive controllers are presented. Besides, synchronization of two non-identical uncertain chaotic systems is investigated using our proposed methods in both full and reduced-order forms. It can be seen that not only our proposed control schemes can be applied to a wide class of uncertain chaotic systems but also it is simple to implement in practical application. Finally, the proposed methods are applied to some famous chaotic systems to verify the effectiveness of the proposed methods.  相似文献   

19.
In this paper, the problems of robust exponential generalized and robust exponential Q-S chaos synchronization are investigated between different dimensional chaotic systems. We consider the more practical and realistic cases when unknown time varying parameters with uncertainties, environmental disturbances, and nonlinearity of input control signals are present. The adaptive technique is employed to design the appropriate controllers and the validity of the proposed controllers are proved using Lyapunov stability theorem. Furthermore, numerical simulations are performed to show the efficiency of the presented scheme.  相似文献   

20.
In this paper, a new fractional‐order chaotic system and an adaptive synchronization of fractional‐order chaotic system are proposed. Parameters adaption laws are obtained to design adaptive controllers using Lyapunov stability theory of fractional‐order system. Finally, reliability of designed controllers and risk analysis of adaptive synchronization problem are formulated and, risk of using the proposed controllers in presences of external disturbances are demonstrated. Also, risk of controllers are reduced using an optimizing method. Numerical examples are used to verify the performance of the proposed controllers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号