首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is devoted to investigate synchronization and antisynchronization of N‐coupled general fractional‐order complex chaotic systems described by a unified mathematical expression with ring connection. By means of the direct design method, the appropriate controllers are designed to transform the fractional‐order error dynamical system into a nonlinear system with antisymmetric structure. Thus, by using the recently established result for the Caputo fractional derivative of a quadratic function and a fractional‐order extension of the Lyapunov direct method, several stability criteria are derived to ensure the occurrence of synchronization and antisynchronization among N‐coupled fractional‐order complex chaotic systems. Moreover, numerical simulations are performed to illustrate the effectiveness of the proposed design.  相似文献   

3.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

4.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

5.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
A one-driving-variable adaptive controller for synchronization of a kind of fractional order chaotic system is designed. Based on the theory of spread spectrum communication and the synchronization of one-driving-variable fractional order chaotic system, we propose a new scheme for general spread spectrum communication. Numerical simulation and circuit experiment results are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

7.
This work presents the synchronization between two different chaotic systems by using an adaptive feedback control scheme. The adaptive synchronization problem between an electrostatic system and electromechanical transducer has been investigated. An adaptive linear feedback law with two controllers is proposed to ensure the global chaos synchronization of the nonlinear electrostatic and electromechanical systems. Numerical simulations results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

8.
This paper proposes two novel adaptive variable structure tracking controllers for a large class of chaotic systems with unknown dynamics in presence of both external disturbances and input nonlinearities. The pros and cons of each proposed methodology is also represented. In order to eliminate the chattering effect in the former controlled system, two corresponding fuzzy adaptive controllers are presented. Besides, synchronization of two non-identical uncertain chaotic systems is investigated using our proposed methods in both full and reduced-order forms. It can be seen that not only our proposed control schemes can be applied to a wide class of uncertain chaotic systems but also it is simple to implement in practical application. Finally, the proposed methods are applied to some famous chaotic systems to verify the effectiveness of the proposed methods.  相似文献   

9.
In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results.  相似文献   

10.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

11.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

12.
In this work, stability analysis of the fractional-order modified Autonomous Van der Pol–Duffing (MAVPD) circuit is studied using the fractional Routh–Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh–Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh–Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis.  相似文献   

13.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

14.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

15.
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.  相似文献   

16.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

17.
The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when zero eigenvalue of Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization.  相似文献   

18.
This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

19.
Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015  相似文献   

20.
Chaotic dynamics of fractional conjugate Lorenz system are demonstrated in terms of local stability and largest Lyapunov exponent. Chaos does exist in the fractional conjugate Lorenz system with order less than three since it has positive largest Lyapunov exponent. Furthermore, scaling chaotic attractors of fractional conjugate Lorenz system is theoretically and numerically analyzed with the help of one-way synchronization method and adaptive synchronization method. Numerical simulations are performed to verify the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号