首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abstract. In this paper the reaction-diffusion systems and the damped wave systems with non-linear terms of gradient form are studied ,and the conditions for making them to be gradient sys-tems are given. So the structure of attractors is clear and simple in some sense by the known re-sult. Some examples are given. Also the reaction-diffusion systems with general nonlinear termsare discussed.  相似文献   

2.
The purpose of this paper is to establish strong lower energy estimates for strong solutions of nonlinearly damped Timoshenko beams, Petrowsky equations in two and three dimensions and wave-like equations for bounded one-dimensional domains or annulus domains in two or three dimensions. We also establish weak lower velocity estimates for strong solutions of the nonlinearly damped Petrowsky equation in two and three dimensions. The feedbacks in consideration have arbitrary growth close to the origin. These results improve the strong lower energy decay rates obtained in our previous papers (Alabau-Boussouira in J Differ Equ 249:1145–1178, 2010; J Differ Equ 248:1473–1517, 2010) for strong solutions of the nonlinearly locally damped wave equation and extend to systems and to Petrowsky equation the method of Alabau-Boussouira (J Differ Equ 249:1145–1178, 2010; J Differ Equ 248:1473–1517, 2010). These results are the first ones for Timoshenko beams and Petrowsky equations.  相似文献   

3.
Katrin Ellermann 《PAMM》2005,5(1):89-90
The dynamics of ships or offshore structures is influenced by several different effects, some of which have a distinctly nonlinear characteristic. Even though in many situations the motion can sufficiently be described by linear models, nonlinear phenomena play a crucial role in the investigation of some more critical operating conditions: Large amplitude motions, sudden jumps in the dynamical behavior and sensitivity to the initial conditions are likely to occur under some circumstances. The response of floating systems such as moored buoys and barges in regular waves can be approximated by analytical or numerical techniques. These analyses reveal the characteristics of different periodic motions. In order to determine how these responses change under a more general forcing, the motion of floating structures under the influence of random disturbances is described by probability distributions. Different mathematical tools can efficiently be applied to models with few degrees of freedom. The localized statistical linearization used here is also promising for larger systems. Modelling aspects of offshore structures and random waves are discussed as well as the determination of probability distributions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We consider the problem of sharp energy decay rates for nonlinearly damped abstract infinite-dimensional systems. Direct methods for nonlinear stabilization generally rely on multiplier techniques, and thus are valid under restrictive geometric conditions compared to the optimal geometric optics condition of Bardos et al. (1992) [10]. We prove sharp, simple and quasi-optimal energy decay rates through an indirect method, namely an observability estimate for the corresponding undamped system. One of the main advantage of these results is that they allow to combine optimal geometric conditions, as for instance that of Bardos et al. (1992) [10] and the optimal-weight convexity method of the first author (Alabau-Boussouira, 2010 [6], Alabau-Boussouira, 2005 [2]) to deduce very simple and quasi-optimal energy decay rates for nonlinearly locally damped systems. We also show that using arguments based on Russell's principle (Russell, 1978 [24]), one can deduce sharp energy decay rates from the exponential stabilization of the linearly damped system. Our results extend to nonlinearly damped systems, those of Haraux (1989) [14] and Ammari and Tucsnak (2001) [9] which concern linearly damped systems.  相似文献   

5.
Uncertainties are present in the modeling of dynamical systems and they must be taken into account to improve the prediction of the models. It is very important to understand how they propagate and how random systems behave. This study aims at pointing out the somehow complex behavior of the structural response of stochastic dynamical systems and consequently the difficulty to represent this behavior using spectral approaches. The main objective is to find numerically the probability density function (PDF) of the response of a random linear mechanical systems. Since it is found that difficulties can occur even for a single-degree-of-freedom system when only the stiffness is random, this work focuses on this application to test several methods. Polynomial Chaos performance is first investigated for the propagation of uncertainties in several situations of stiffness variances for a damped single-degree-of-freedom system. For some specific conditions of damping and stiffness variances, it is found that numerical difficulties occur for the standard polynomial bases near the resonant frequency, where it is generally observed that the shape of the system response PDFs presents multimodality. Strategies to build enhanced bases are then proposed and investigated with varying degrees of success. Finally, a multi-element approach is used in order to gain robustness.  相似文献   

6.
研究Duffing振子在谐和与随机噪声联合作用下系统响应的双峰稳态概率密度问题.用多尺度法分离了系统的快变项,得到了系统慢变项满足的随机微分方程.用线性化方法求出了双峰稳态概率密度的表达式.数值模拟表明提出的方法是有效的.  相似文献   

7.
本文讨论阻尼振动系统(离散或连续系统)在周期外激励作用下的强迫响应;系统的阻尼阵不能对角化.导出了强迫响应一般解的显式解析表达式.利用这些解式,本文对某些振动现象作了较普遍的解析讨论.如,从一般角度讨论了单阻尼振动系统特有的“固定振幅点”现象;讨论了同相位外激励作用下产生同相位响应的条件等等.本文导出的解式对一大类系统仅含很低阶的矩阵求逆运算,因而在计算机数值计算上.本方法比之于现有方法,具有程序简单、耗时少和精度高等优点.本方法可平行应用于转子动力学的不平衡响应分析.  相似文献   

8.
We consider monotone semigroups in ordered spaces and give general results concerning the existence of extremal equilibria and global attractors. We then show some applications of the abstract scheme to various evolutionary problems, from ODEs and retarded functional differential equations to parabolic and hyperbolic PDEs. In particular, we exhibit the dynamical properties of semigroups defined by semilinear parabolic equations in RN with nonlinearities depending on the gradient of the solution. We consider as well systems of reaction-diffusion equations in RN and provide some results concerning extremal equilibria of the semigroups corresponding to damped wave problems in bounded domains or in RN. We further discuss some nonlocal and quasilinear problems, as well as the fourth order Cahn-Hilliard equation.  相似文献   

9.
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples. Received: October 1998 / Accepted: June 2000?Published online October 18, 2000  相似文献   

10.
ABSTRACT

This paper is concerned with the decay property of a nonlinear viscoelastic wave equation with linear damping, nonlinear damping and source term. Under weaker assumption on the relaxation function, we establish a general decay result, which extends the result obtained in Messaoudi [Exponential decay of solutions of a nonlinearly damped wave equation. Nodea-Nonlinear Differ Equat Appl. 2005;12:391–399].  相似文献   

11.
We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schrödinger?s equation and, for strong stability, also the special case of finite-dimensional systems.  相似文献   

12.
Markov inequalities on ordered linear spaces are tightened through the α-unimodality of the corresponding measures. Modality indices are studied for various induced measures, including the singular values of a random matrix and the periodogram of a time series. These tools support a detailed study of linear inference and the ordering of random matrices, to include fixed and random designs and probability bounds on their comparative efficiencies. Other applications include probability bounds on quadratic forms and of order statistics on Rn, on periodograms in the analysis of time series, and on run-length distributions in multivariate statistical process control. Connections to other topics in applied probability and statistics are noted.  相似文献   

13.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0 < α < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.  相似文献   

14.
研究了带visco-elastic项的非线性系统,在谐和与有界噪声联合参激作用下的响应和稳定性问题。用多尺度法分离了系统的快变项,并求出了系统的最大Liapunov指数和稳态概率密度函数,根据最大Liapunov指数可得系统解稳定的充分必要条件。讨论了系统的visco-elastic项对系统阻尼项和刚度项的贡献,给出了随机项和确定性参激强度等参数对系统响应影响的讨论。数值模拟表明该方法是有效的。  相似文献   

15.
We study the structure of the periodic steady-state solutions of forced and damped strongly nonlinear coupled oscillators in the frequency–energy domain by constructing forced and damped frequency – energy plots (FEPs). Specifically, we analyze the steady periodic responses of a two degree-of-freedom system consisting of a grounded forced linear damped oscillator weakly coupled to a strongly nonlinear attachment under condition of 1:1 resonance. By performing complexification/averaging analysis we develop analytical approximations for strongly nonlinear steady-state responses. As an application, we examine vibration isolation of a harmonically forced linear oscillator by transferring and confining the steady-state vibration energy to the weakly coupled strongly nonlinear attachment, thereby drastically reducing its steady-state response. By comparing the nonlinear steady-state response of the linear oscillator to its corresponding frequency response function in the absence of a nonlinear attachment we demonstrate the efficacy of drastic vibration reduction through steady-state nonlinear targeted energy transfer. Hence, our study has practical implications for the effective passive vibration isolation of forced oscillators.  相似文献   

16.
In this paper,we focus on studying approximate solutions of damped oscillatory solutions of the compound KdV-Burgers equation and their error estimates.We employ the theory of planar dynamical systems to study traveling wave solutions of the compound KdV-Burgers equation.We obtain some global phase portraits under different parameter conditions as well as the existence of bounded traveling wave solutions.Furthermore,we investigate the relations between the behavior of bounded traveling wave solutions and the dissipation coefficient r of the equation.We obtain two critical values of r,and find that a bounded traveling wave appears as a kink profile solitary wave if |r| is greater than or equal to some critical value,while it appears as a damped oscillatory wave if |r| is less than some critical value.By means of analysis and the undetermined coefficients method,we find that the compound KdV-Burgers equation only has three kinds of bell profile solitary wave solutions without dissipation.Based on the above discussions and according to the evolution relations of orbits in the global phase portraits,we obtain all approximate damped oscillatory solutions by using the undetermined coefficients method.Finally,using the homogenization principle,we establish the integral equations reflecting the relations between exact solutions and approximate solutions of damped oscillatory solutions.Moreover,we also give the error estimates for these approximate solutions.  相似文献   

17.
Many low damped structures as turbine blades or drill strings are exposed to high dynamical loads causing high vibration amplitudes. These applications comprise sub-critical eigenfrequencies. Hereby, the lower eigenfrequencies have to be passed before reaching the operating point. Most investigations of vibration amplitudes caused by a resonance passage deal with the computation of single degree of freedom systems. Thereby, it has been shown that the stationary vibration response provides the highest possible amplitude. Further it can be stated that the maximum vibration response of the resonance passage decreases with an increasing sweep velocity [3]. Isolated modes of linear systems can be represented by single degree of freedom systems. Subsequently a mode shape can be described by the multiplication of the amplification function of the mode and the belonging eigenvector. There are only some recent works that deal with resonance passages of vicinal modes, e. g. [1]. In this paper the resonance passage of a three dimensional system with nearby modes is studied. To calculate the transient vibration response an analytical approach is used. It is shown that the maximum amplitude of the stationary vibration response is not the upper limit for the maximum amplitude of the resonance passage. Thus, the maximum amplitude may rise while the sweep velocity increases. Hence, regarding a multi degree of freedom system the maximum amplitude of the resonance passage can exceed the maximum amplitude of the stationary vibration response. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We consider the problem of energy decay rates for nonlinearly damped abstract infinite dimensional systems. We prove sharp, simple and quasi-optimal energy decay rates through an indirect method, namely a weak observability estimate for the corresponding undamped system. One of the main advantage of these results is that they allow to combine the optimal-weight convexity method of Alabau-Boussouira (Appl Math Optim 51:61–105, 2005) and a methodology of Ammari and Tucsnak (ESAIM COCV 6:361–386, 2001) for weak stabilization by observability. Our results extend to nonlinearly damped systems, those of Ammari and Tucsnak (ESAIM COCV 6:361–386, 2001). At the end, we give an appendix on the weak stabilization of linear evolution systems.  相似文献   

19.
Summary. Branching random walks and contact processes on the homogeneous tree in which each site has d+1 neighbors have three possible types of behavior (for d≧ 2): local survival, local extinction with global survival, and global extinction. For branching random walks, we show that if there is local extinction, then the probability that an individual ever has a descendent at a site n units away from that individual’s location is at most d − n/2 , while if there is global extinction, this probability is at most d −n . Next, we consider the structure of the set of invariant measures with finite intensity for the system, and see how this structure depends on whether or not there is local and/or global survival. These results suggest some problems and conjectures for contact processes on trees. We prove some and leave others open. In particular, we prove that for some values of the infection parameter λ, there are nontrivial invariant measures which have a density tending to zero in all directions, and hence are different from those constructed by Durrett and Schinazi in a recent paper. Received: 26 April 1996/In revised form: 20 June 1996  相似文献   

20.
§ 1  IntroductionThe study of nonlinear dynamics is a fascinating problem which is at the very heartofthe understanding ofmany importantproblems ofthe natural sciences.Infinite dimensionaldynamical systems are very important in nonlinear dynamics.For an infinite dimensionaldynamical system,we mainly study the existence and the structure ofthe attractors.Thereare detailed discussions in [1 ] .Itis especially mentioned there thatthe attractors of gradi-ent systems are of simple structure in s…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号