首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In this study, the static response is presented for a simply supported functionally graded hybrid beam subjected to a transverse uniform load. Material properties of the beam are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. By varying the fiber volume fraction within a symmetric laminated beam and combining two fiber types to create a hybrid functionally graded material (FGM) can offer desirable increases in axial and bending stiffness. The equations governing the hybrid FGM beams are determined using the principle of virtual work (PVW) arising from the higher order shear deformation theories. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick hybrid FGM beam under uniform distributed load are discussed in depth. The effect of power-law exponent on the deflection and stresses are also commented.  相似文献   

2.
The large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The Von-Karman type nonlinear strain–displacement relationships are employed where the ends of the beam are constrained to move axially. The effects of the transverse shear deformation and rotary inertia are included based upon the Timoshenko beam theory. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A statically exact beam element which devoid the shear locking effect with displacement fields based on the first order shear deformation theory is used to study the geometric nonlinear effects on the vibrational characteristics of functionally graded beams. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law exponent, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible. Some new results for the nonlinear natural frequencies are presented in both tabular and graphical forms which can be used for future references.  相似文献   

3.
Displacement field based on higher order shear deformation theory is implemented to study the static behavior of functionally graded metal–ceramic (FGM) beams under ambient temperature. FGM beams with variation of volume fraction of metal or ceramic based on power law exponent are considered. Using the principle of stationary potential energy, the finite element form of static equilibrium equation for FGM beam is presented. Two stiffness matrices are thus derived so that one among them will reflect the influence of rotation of the normal and the other shear rotation. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick FGM beam under uniform distributed load for clamped–clamped and simply supported boundary conditions are discussed in depth. The effect of power law exponent for various combination of metal–ceramic FGM beam on the deflection and stresses are also commented. The studies reveal that, depending on whether the loading is on the ceramic rich face or metal rich face of the beam, the static deflection and the static stresses in the beam do not remain the same.  相似文献   

4.
功能梯度材料Timoshenko梁的热过屈曲分析   总被引:3,自引:0,他引:3  
研究了功能梯度材料Timoshenko梁在横向非均匀升温下的热过屈曲.在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度Timoshenko梁在热-机械载荷作用下的几何非线性控制方程,将问题归结为含有7个基本未知函数的非线性常微分方程边值问题A·D2其中,假设功能梯度梁的材料性质为沿厚度方向按照幂函数连续变化的形式.然后采用打靶法数值求解所得强非线性边值问题,获得了横向非均匀升温场内两端固定Timoshenko梁的静态非线性热屈曲和热过屈曲数值解.绘出了梁的变形随温度载荷及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数对梁变形的影响.结果表明,由于材料在横向的非均匀性,均匀升温时的梁中存在拉-弯耦合变形.  相似文献   

5.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

6.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

7.
Based on the homotopy analysis method, the nonlinear vibration of porous functionally graded material (FGM) conveying pipes under generalized boundary conditions was studied. Based on the power-law distribution of the FGM and the Voigt model, the physical properties of the porous pipe material were described. Under the Euler-Bernoulli beam theory and the von Kármán nonlinear theory, and by means of Hamilton’s variational principle, the dynamic control equations and generalized boundary conditions for porous FGM conveying pipes were established. The homotopy analysis method was used to solve the nonlinear vibration characteristics of the porous FGM conveying pipe under generalized boundary conditions. The numerical results show that, the translation spring has little effect on the critical velocity of instability, while the rotation spring increases the critical velocity of instability, making the system more stable; in the nonlinear system, the viscoelastic coefficient does not change the critical velocity; the pipe length, the power-law exponent and the porosity all influence the nonlinear free vibration of the porous FGM conveying pipe. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

8.
基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载 挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载 挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.  相似文献   

9.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

10.
11.
Present research deals with the thermal buckling and post-buckling analysis of the geometrically imperfect functionally graded tubes on nonlinear elastic foundation. Imperfect FGM tube with immovable clamped–clamped end conditions is subjected to thermal environments. Tube under different types of thermal loads, such as heat conduction, linear temperature change, and uniform temperature rise is analyzed. Material properties of the FGM tube are assumed to be temperature dependent and are distributed through the radial direction. Displacement field satisfies the tangential traction free boundary conditions on the inner and outer surfaces of the FGM tube. The nonlinear governing equations of the FGM tube are obtained by means of the virtual displacement principle. The equilibrium equations are based on the nonlinear von Kármán assumption and higher order shear deformation circular tube theory. These coupled differential equations are solved using the two-step perturbation method. Approximate solutions are provided to estimate the thermal post-buckling response of the perfect/imperfect FGM tube as explicit functions of the various thermal loads. Numerical results are provided to explore the effects of different geometrical parameters of the FGM tube subjected to different types of thermal loads. The effects of power law index, springs stiffness of elastic foundation, and geometrical imperfection parameter of tube are also included.  相似文献   

12.
By using mathematical similarity and load equivalence between the governing equations, bending solutions of FGM Timoshenko beams are derived analytically in terms of the homogenous Euler–Bernoulli beams. The deflection, rotational angle, bending moment and shear force of FGM Timoshenko beams are expressed in terms of the deflection of the corresponding homogenous Euler–Bernoulli beams with the same geometry, the same loadings and end constraints. Consequently, solutions of bending of the FGM Timoshenko beams are simplified as the calculation of the transition coefficients which can be easily determined by the variation law of the gradient of the material properties and the geometry of the beams if the solutions of corresponding Euler–Bernoulli beam are known. As examples, solutions are given for the FGM Timoshenko beams under S–S, C–C, C–F and C–S end constraints and arbitrary transverse loadings to illustrate the use of this approach. These analytical solutions can be as benchmarks in the further investigations of behaviors of FGM beams.  相似文献   

13.
The nonlinear modeling and subsequent dynamic analysis of cracked Timoshenko beams with functionally graded material (FGM) properties is investigated for the first time using harmonic balance method followed by an iterative technique. Crack is assumed to be open throughout. During modeling, nonlinear strain–displacement relation is considered. Rotational spring model is adopted in order to model the open cracks. Energy formulations are established using Timoshenko beam theory. Nonlinear governing differential equations of motion are derived using Lagrange's equation. In order to incorporate the influence of higher order harmonics, harmonic balance method is employed. This reduces the governing differential equations into nonlinear set of algebraic equations. These equations are solved using two different iterative techniques. Methodology is computationally easier and efficient as well. This is observed that although assumption of simple harmonic motion (SHM) simplifies the problem, it yields to erroneous results at higher amplitude of motion. However, accuracy of the solution is improved considerably when the contribution of higher order harmonic terms are considered in the analysis. Results are compared with the available results, which confirm the validity of the methodology. Subsequent to that a parametric study on influence of forcing term, material indices and crack parameters on large amplitude vibration of Timoshenko beams is performed for two different boundary conditions.  相似文献   

14.
High-order flexural theories for short laminated composite beams subjected to mechanical and thermal loading are presented. The formulation allows for warping of the cross-section of the beam and eliminates the need for using arbitrary shear correction coefficients as in other theories. Based on higher-order shear deformation theories, the governing equations are obtained using the principle of virtual work (PVW). The justification for use of higher-order shear deformation theories is established for short and composite beams where cross-sectional warping is predominant.  相似文献   

15.
Geometric modeling and numerical analysis of multi-directional FGM (Functionally Graded Material) plate, whose material properties grade continuously both in its thickness and in-plane directions, are increasingly required. In this work, postbuckling behavior of this type of plates with multiple cutouts is, for the first time, numerically investigated through the combination of NURBS-based IGA (IsoGeonetric Analysis) and FCM (Finite Cell Method). The nonlinear deformation of plate is determined by TSDT (Third-order Shear Deformation Theory) and von Kármán nonlinear assumptions without the requirement of SCFs (shear correction factors). Besides, the higher continuity advantage of NURBS basis functions can easily meet the C1-continuous requirement of the displacement field. The main contribution is introducing the FCM to deal with the influence of complex cutouts on the postbuckling characteristics. The geometric interfaces of the cutouts are approached and approximated by adaptive quadrature procedure in the distinguished cut elements. The advantage of this implementation is that the previously tricky process of representing the geometry of perforated plate with multiple NURBS patches can be eliminated, which naturally avoids the imposition of C1-continuity condition across the patch boundaries. The cylinder arc-length method combined with modified Newton–Raphson iteration algorithm, which takes into account of the initial geometric imperfections, is applied to implement geometrically nonlinear stability analysis and track the postbuckling paths. The effectiveness and reliability of the presented method are verified with available solutions of isotropic and conventional perfect FGM plates. Subsequently, a series of factors, including material volume fraction, length-to-thickness ratio, boundary condition, cutout size, etc., affecting the postbuckling responses of multi-directional perforated FGM plates are considered and investigated.  相似文献   

16.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

17.
In this study, a systematic approach to study small-amplitude vibrations of large deflected straight beams is presented. The differential equation system of small-amplitude free vibrations about the deflected configuration is presented considering the effects of axial extension, shear deformation, and rotatory inertia. It is shown that in the absence of axial, and shear forces, the differential equation system of small-amplitude vibrations of the deflected beam becomes identical to that of an initially curved beam. To solve the differential equation system of the large deflection problem, Variational Iterational Method is used. Free vibration analysis around the deflected configuration is performed by using Differential Quadrature Method. Several numerical examples are solved to show the versatility of the presented approach.  相似文献   

18.
In the present study, a novel exact closed-form procedure based on the third order shear deformation plate theory is developed to analyze in-plane and out-of-plane frequency responses of circular/annular functionally graded material (FGM) plates embedded in piezoelectric layers for both close/open circuit electrical boundary conditions. Introducing a new analytical method, five governing partial deferential equations of motion beside Maxwell electrostatic equation are solved via an exact closed-form method. The high accuracy and reliability of the present approach is confirmed by comparing some of the present data with their counterparts reported in the literature. Finally, the effect of material properties, power law index and boundary conditions on the free vibration of the smart FGM plate are studied and discussed in detail.  相似文献   

19.
Engineering systems, such as rolled steel beams, chain and belt drives and high-speed paper, can be modeled as axially translating beams. This article scrutinizes vibration and stability of an axially translating viscoelastic Timoshenko beam constrained by simple supports and subjected to axial pretension. The viscoelastic form of general rheological model is adopted to constitute the material of the beam. The partial differential equations governing transverse motion of the beam are derived from the extended form of Hamilton's principle. The non-transforming spectral element method (NTSEM) is applied to transform the governing equations into a set of ordinary differential equations. The formulation is similar to conventional FFT-based spectral element model except that Daubechies wavelet basis functions are used for temporal discretization. Influences of translating velocities, axial tensile force, viscoelastic parameter, shear deformation, beam model and boundary condition types are investigated on the underlying dynamic response and stability via the NTSEM and demonstrated via numerical simulations.  相似文献   

20.
基于Euler-Bernoulli梁理论的经典纤维模型忽略了剪切变形给截面带来的影响,为了得到更加精确的梁单元模型,该文基于考虑剪切效应的纤维梁单元,根据Timoshenko梁理论,推导了该纤维梁单元的刚度矩阵,并结合弹塑性增量理论,同时考虑了几何非线性和材料非线性的双重影响,建立了压弯剪复杂应力状态下结构非线性有限元...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号