首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载 挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载 挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.  相似文献   

2.
Present research deals with the thermal buckling and post-buckling analysis of the geometrically imperfect functionally graded tubes on nonlinear elastic foundation. Imperfect FGM tube with immovable clamped–clamped end conditions is subjected to thermal environments. Tube under different types of thermal loads, such as heat conduction, linear temperature change, and uniform temperature rise is analyzed. Material properties of the FGM tube are assumed to be temperature dependent and are distributed through the radial direction. Displacement field satisfies the tangential traction free boundary conditions on the inner and outer surfaces of the FGM tube. The nonlinear governing equations of the FGM tube are obtained by means of the virtual displacement principle. The equilibrium equations are based on the nonlinear von Kármán assumption and higher order shear deformation circular tube theory. These coupled differential equations are solved using the two-step perturbation method. Approximate solutions are provided to estimate the thermal post-buckling response of the perfect/imperfect FGM tube as explicit functions of the various thermal loads. Numerical results are provided to explore the effects of different geometrical parameters of the FGM tube subjected to different types of thermal loads. The effects of power law index, springs stiffness of elastic foundation, and geometrical imperfection parameter of tube are also included.  相似文献   

3.
功能梯度材料Timoshenko梁的热过屈曲分析   总被引:3,自引:0,他引:3  
研究了功能梯度材料Timoshenko梁在横向非均匀升温下的热过屈曲.在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度Timoshenko梁在热-机械载荷作用下的几何非线性控制方程,将问题归结为含有7个基本未知函数的非线性常微分方程边值问题A·D2其中,假设功能梯度梁的材料性质为沿厚度方向按照幂函数连续变化的形式.然后采用打靶法数值求解所得强非线性边值问题,获得了横向非均匀升温场内两端固定Timoshenko梁的静态非线性热屈曲和热过屈曲数值解.绘出了梁的变形随温度载荷及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数对梁变形的影响.结果表明,由于材料在横向的非均匀性,均匀升温时的梁中存在拉-弯耦合变形.  相似文献   

4.
Displacement field based on higher order shear deformation theory is implemented to study the static behavior of functionally graded metal–ceramic (FGM) beams under ambient temperature. FGM beams with variation of volume fraction of metal or ceramic based on power law exponent are considered. Using the principle of stationary potential energy, the finite element form of static equilibrium equation for FGM beam is presented. Two stiffness matrices are thus derived so that one among them will reflect the influence of rotation of the normal and the other shear rotation. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick FGM beam under uniform distributed load for clamped–clamped and simply supported boundary conditions are discussed in depth. The effect of power law exponent for various combination of metal–ceramic FGM beam on the deflection and stresses are also commented. The studies reveal that, depending on whether the loading is on the ceramic rich face or metal rich face of the beam, the static deflection and the static stresses in the beam do not remain the same.  相似文献   

5.
This paper investigates the imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams subjected to in-plane temperature variation. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction and temperature-dependent. A generic imperfection function is used to model various possible imperfections, including sine type, global and localized imperfections. The governing equations are derived based on the first-order shear deformation beam theory and von-Kármán geometric nonlinearity. The differential quadrature method in conjunction with modified Newton–Raphson technique is employed to determine the thermal post-buckling equilibrium path of imperfect FG-CNTRC beams. Thermal buckling is treated as a subset problem. A parametric study is conducted to examine the effects of imperfection mode, half-wave number, location and amplitude on their thermal post-buckling performance. The influences of distribution pattern and volume fraction of carbon nanotubes, boundary conditions and slenderness ratio are discussed as well. The results indicate that the thermal post-buckling is highly sensitive to the imperfection mode, half-wave number, location as well as its amplitude. It is also shown that the clamped-clamped FG-CNTRC beam is more sensitive to imperfections than those with other boundary conditions whereas other parameters do not substantially affect the imperfection sensitivity of thermal post-buckling behaviour.  相似文献   

6.
功能梯度材料杆的热后屈曲分析   总被引:1,自引:0,他引:1  
对两端不可移简支陶瓷-金属功能梯度材料(FGM)杆建立了在热载荷作用下的非线性控制微分方程,采用打靶法分析了由二氧化锆和Ti-6Al-4V两种材料组成的FGM杆的热后屈曲行为.首先给出了在均匀温度场中不同梯度指标的FGM杆的热后屈曲平衡路径,并与二氧化锆和Ti-6Al-4V两种均质材料杆的相应特性进行了比较,同时讨论了不同端部转角下梯度指标对FGM杆稳定性的影响;然后分别研究了在温差一定、下表面温度变化时和在下表面温度一定、温差变化时FGM杆的热后屈曲特性,也与两种均质材料杆的后屈曲特性进行了比较.  相似文献   

7.
横向非均升温下弹性梁的热过屈曲   总被引:6,自引:1,他引:5  
基于轴向可伸长梁的几何非线性理论和打靶法,研究了两端不可移简支弹性梁在横向非均匀分布升温场作用下的热弹性屈曲响应。着重分析了横向升温变化对热过屈曲变形的影响,给出了相应的特性曲线。数值结果表明,由于横向温度改变会产生热弯曲内力,因此过屈曲平衡路径与有初始变形梁的过屈曲平衡路径相似。  相似文献   

8.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

9.
Employing Euler–Bernoulli beam theory and the physical neutral surface concept, the nonlinear governing equation for the functionally graded material beam with two clamped ends and surface-bonded piezoelectric actuators is derived by the Hamilton’s principle. The thermo-piezoelectric buckling, nonlinear free vibration and dynamic stability for the piezoelectric functionally graded beams, subjected to one-dimensional steady heat conduction in the thickness direction, are studied. The critical buckling loads for the beam are obtained by the existing methods in the analysis of thermo-piezoelectric buckling. The Galerkin’s procedure and elliptic function are adopted to obtain the analytical solution of the nonlinear free vibration, and the incremental harmonic balance method is applied to obtain the principle unstable regions of the piezoelectric functionally graded beam. In the numerical examples, the good agreements between the present results and existing solutions verify the validity and accuracy of the present analysis and solving method. Simultaneously, validation of the results achieved by rule of mixture against those obtained via the Mori–Tanaka scheme is carried out, and excellent agreements are reported. The effects of the thermal load, electric load, and thermal properties of the constituent materials on the thermo-piezoelectric buckling, nonlinear free vibration, and dynamic stability of the piezoelectric functionally graded beam are discussed, and some meaningful conclusions have been drawn.  相似文献   

10.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

11.
In this work, buckling and post-buckling analysis of fluid conveying multi-walled carbon nanotubes are investigated analytically. The nonlinear governing equations of motion and boundary conditions are derived based on Eringen nonlocal elasticity theory. The nanotube is modeled based on Euler–Bernoulli and Timoshenko beam theories. The Von Karman strain–displacement equation is used to model the structural nonlinearities. Furthermore, the Van der Waals interaction between adjacent layers is taken into account. An analytical approach is employed to determine the critical (buckling) fluid flow velocities and post-buckling deflection. The effects of the small-scale parameter, Van der Waals force, ends support, shear deformation and aspect ratio are carefully examined on the critical fluid velocities and post-buckling behavior.  相似文献   

12.
Notionsa. b, h Plate dimensionsL', [-. [1- mid-plane displacement componentsu- v- Ic dboensionless mid-plane displacement componentsVy., ac'~ slOPeS in xo and gi plane, ropectivelyJll, N number of terms in Cheby-shev series in x and y directions, respectivelyCCCC all edges clampedSSSS all edges simply supportedCCCS three edges (x = fi and y = 1) clamped and one (y = --1) simply supportedCCSS two edges (x = 11) clamped and two (y = fi) simply supportedCSSS one edge (x = --1) clamped …  相似文献   

13.
Classical shear beams only consider the deflection resulting from sliding of parallel cross-sections, and do not consider the effect of rotation of cross-sections. Adopting the Kausel beam theory where cross-sectional rotation is considered, this article studies stability and free vibration of axially-loaded shear beams using Engesser’s and Haringx’s approaches. For attached mass at elastically supported ends, we present a unified analytical approach for obtaining a characteristic equation. By setting natural frequencies to be zero in this equation, critical buckling load can be determined. The resulting frequency equation reduces to the classical one when cross-sections do not rotate. The mode shapes at free vibration and buckling are given. The frequency equations for shear beam-columns with special free/pinned/clamped ends and carrying concentrated mass at the end can be obtained from the present. The influences of elastic restraint coefficients, axial loads and moment of inertia on the natural frequencies and buckling loads are expounded. It is found that the Engesser theory is superior to the Haringx theory.  相似文献   

14.
Presented herein is the prediction of buckling behavior of size-dependent microbeams made of functionally graded materials (FGMs) including thermal environment effect. To this purpose, strain gradient elasticity theory is incorporated into the classical third-order shear deformation beam theory to develop a non-classical beam model which contains three additional internal material length scale parameters to consider the effects of size dependencies. The higher-order governing differential equations are derived on the basis of Hamilton’s principle. Afterward, the size-dependent differential equations and related boundary conditions are discretized along with commonly used end supports by employing generalized differential quadrature (GDQ) method. A parametric study is carried out to demonstrate the influences of the dimensionless length scale parameter, material property gradient index, temperature change, length-to-thickness aspect ratio and end supports on the buckling characteristics of FGM microbeams. It is revealed that temperature change plays more important role in the buckling behavior of FGM microbeams with higher values of dimensionless length scale parameter.  相似文献   

15.
根据扁壳几何非线性理论,推导了均布压力与均匀温度场联合作用下的扁球壳的位移型几何非线性控制方程.考虑夹紧边界条件,采用打靶法得到了扁球壳轴对称弯曲与屈曲的数值结果.讨论了壳体几何参数对平衡路径、临界荷载的影响.给出了壳体临界几何参数.当几何参数大于临界几何参数时,上、下临界荷载都随几何参数增加而增加.给定几何参数时,考察了不同均匀温度场对壳体上、下临界荷载、临界几何参数以及平衡构型的影响.均匀升温会使上临界荷载显著增加,会使下临界荷载略有减小.均匀变温会使临界几何参数改变.  相似文献   

16.
In this study, the static response is presented for a simply supported functionally graded hybrid beam subjected to a transverse uniform load. Material properties of the beam are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. By varying the fiber volume fraction within a symmetric laminated beam and combining two fiber types to create a hybrid functionally graded material (FGM) can offer desirable increases in axial and bending stiffness. The equations governing the hybrid FGM beams are determined using the principle of virtual work (PVW) arising from the higher order shear deformation theories. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick hybrid FGM beam under uniform distributed load are discussed in depth. The effect of power-law exponent on the deflection and stresses are also commented.  相似文献   

17.
弹性杆的动态屈曲模态   总被引:2,自引:0,他引:2  
本文提出了屈曲相关初缺陷的概念,采用最优模态分析方法,由Bernolli-Euler梁方程出发给出了弹性杆在齐次边条件下的动态屈曲模态、由此对两端固支弹性杆的动态屈曲模态进行了讨论.  相似文献   

18.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

19.
This study presents a unified model for the nonlocal response of nanobeams in buckling and postbuckling states. The formulation is suitable for the classical Euler–Bernoulli, first-order Timoshenko, and higher-order shear deformation beam theories. The small-scale effect is modeled according to the nonlocal elasticity theory of Eringen. The equations of equilibrium are obtained using the principle of virtual work. The stress resultants are developed taking into account the nonlocal effect. Analytical solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state are obtained. It is found out that as the nonlocal parameter increases, the critical buckling load reduces and the amplitude of buckling increases. Numerical results showing variation of the critical buckling load and the amplitude of buckling with the nonlocal parameter and the length-to-height ratio for simply supported and clamped–clamped nanobeams are presented.  相似文献   

20.
This paper revisits the effect of secondary bifurcations on the post-buckling response of a simple 3D system of elastically restrained beams, first discussed by Luongo in [19]. Our main objective is to show how to construct a uniform asymptotic expression for the localised buckling patterns experienced by this model. The governing equation is formulated as a fourth-order eigenvalue problem with non-constant coefficients and then a complex WKB technique is employed to yield the localised instability patterns. Numerical simulations supporting the analytical findings are included as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号