首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In this study, the static response is presented for a simply supported functionally graded hybrid beam subjected to a transverse uniform load. Material properties of the beam are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. By varying the fiber volume fraction within a symmetric laminated beam and combining two fiber types to create a hybrid functionally graded material (FGM) can offer desirable increases in axial and bending stiffness. The equations governing the hybrid FGM beams are determined using the principle of virtual work (PVW) arising from the higher order shear deformation theories. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick hybrid FGM beam under uniform distributed load are discussed in depth. The effect of power-law exponent on the deflection and stresses are also commented.  相似文献   

2.
By using mathematical similarity and load equivalence between the governing equations, bending solutions of FGM Timoshenko beams are derived analytically in terms of the homogenous Euler–Bernoulli beams. The deflection, rotational angle, bending moment and shear force of FGM Timoshenko beams are expressed in terms of the deflection of the corresponding homogenous Euler–Bernoulli beams with the same geometry, the same loadings and end constraints. Consequently, solutions of bending of the FGM Timoshenko beams are simplified as the calculation of the transition coefficients which can be easily determined by the variation law of the gradient of the material properties and the geometry of the beams if the solutions of corresponding Euler–Bernoulli beam are known. As examples, solutions are given for the FGM Timoshenko beams under S–S, C–C, C–F and C–S end constraints and arbitrary transverse loadings to illustrate the use of this approach. These analytical solutions can be as benchmarks in the further investigations of behaviors of FGM beams.  相似文献   

3.
This paper presents the decomposition theorem of rectangular beams and indicates that the general state of stress of beams can be decomposed into two parts: the interior state and the Papkovich–Fadle state (shortened form the P–F state). The refined theory of beams is derived by using Papkovich–Neuber solution (shortened form the P–N solution) and Lur’e method without ad hoc assumptions. It is shown that the displacements and stresses of the beam can be represented by the angle of rotation and the deflection of the neutral surface. Based on the refined beam theory, the exact equations for the beam without transverse surface loadings are derived and consist of two governing differential equations: the fourth-order equation and the transcendental equation. It is then proved that the refined beam theory and the decomposition beam theorem are equivalent, i.e., the fourth-order equation and the transcendental equation are equivalent to the interior state and the P–F state, respectively.  相似文献   

4.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

5.
《Applied Mathematical Modelling》2014,38(11-12):3054-3066
The large deflections of tapered functionally graded beams subjected to end forces are studied by using the finite element method. The material properties of the beams are assumed to vary through the thickness direction according to a power law distribution. A first order shear deformable beam element employed the exact polynomials to interpolate the transverse displacement and rotation, is formulated in the context of the co-rotational approach. The large deflection response of the beams is computed by using the arc-length control algorithm in combination with the Newton–Raphson iterative method. The numerical results show that the formulated element is capable to assess accurately the response of the beams by using just several elements. A parametric study is given to examine the influence of the material non-homogeneity, taper ratio as well as the aspect ratio on the large deflection behaviour of the beams.  相似文献   

6.
This work addresses a static analysis of functionally graded material (FGM) plates using higher order shear deformation theory. In the theory the transverse shear stresses are represented as quadratic through the thickness and hence it requires no shear correction factor. The material property gradient is assumed to vary in the thickness direction. Mori and Tanaka theory (1973) [1] is used to represent the material property of FGM plate at any point. The thermal gradient across the plate thickness is represented accurately by utilizing the thermal properties of the constituent materials. Results have been obtained by employing a C° continuous isoparametric Lagrangian finite element with seven degrees of freedom for each node. The convergence and comparison studies are presented and effects of the different material composition and the plate geometry (side-thickness, side–side) on deflection and temperature are investigated. Effect of skew angle on deflection and axial stress of the plate is also studied. Effects of material constant n on deflection and the temperature distribution are also discussed in detail.  相似文献   

7.
This study investigates the nonlinear free vibration of functionally graded material (FGM) beams by different shear deformation theories. The volume fractions of the material constituents and effective material properties are assumed to be changing in the thickness direction according to the power-law form. The von Kármán geometric nonlinearity has been considered in the formulation. The Ritz method and Lagrange equation are adopted to yield the discrete formulations. A direct numerical integration method for the motion equation in matrix form is developed to solve the nonlinear frequencies of FGM beams. Comparing with the global concordant deformation assumption (GCDA), a new deformation assumption named as local concordant deformation assumption (LCDA) is proposed in this study. The LCDA fits with the real deformation of the vibrating beam better, thus more accurate results of the nonlinear frequency can be expected. In numerical results, the comparison study of the GCDA and LCDA is carried out. In addition, the effects of power-law index, slenderness ratio and maximum deflection for different shear deformation theories and boundary conditions on the nonlinear frequency of the beam are discussed.  相似文献   

8.
功能梯度材料Timoshenko梁的热过屈曲分析   总被引:3,自引:0,他引:3  
研究了功能梯度材料Timoshenko梁在横向非均匀升温下的热过屈曲.在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度Timoshenko梁在热-机械载荷作用下的几何非线性控制方程,将问题归结为含有7个基本未知函数的非线性常微分方程边值问题A·D2其中,假设功能梯度梁的材料性质为沿厚度方向按照幂函数连续变化的形式.然后采用打靶法数值求解所得强非线性边值问题,获得了横向非均匀升温场内两端固定Timoshenko梁的静态非线性热屈曲和热过屈曲数值解.绘出了梁的变形随温度载荷及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数对梁变形的影响.结果表明,由于材料在横向的非均匀性,均匀升温时的梁中存在拉-弯耦合变形.  相似文献   

9.
The deflection of a beam on an elastic foundation is determined with allowance for shears and without postulating a law of shear-stress distribution. The accuracy of approximating this law with a quadratic parabola is estimated. The effect of shears on deflection is investigated in relation to beams of different length made of materials of the oriented glass-reinforced plastic type with low shear strength.Mekhanika Polimerov, Vol. 3, No. 5, pp. 881–887, 1967  相似文献   

10.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

11.
In this article, homotopy analysis method (HAM) is employed to investigate non-linear large deformation of Euler–Bernoulli beams subjected to an arbitrary distributed load. Constitutive equations of the problem are obtained. It is assumed that the length of the beam remains constant after applying external loads. Different auxiliary parameters and functions of the HAM and the extra auxiliary parameter, which is applied to initial guess of the solution, are employed to procure better convergence rate of the solution. The results of the solution are obtained for two different examples including constant cross sectional beam subjected to constant distributed load and periodic distributed load. Special base functions, orthogonal polynomials e.g. Chebyshev expansion, are employed as a tool to improve the convergence of the solution. The general solution, presented in this paper, can be used to attain the solution of the beam under arbitrary distributed load and flexural stiffness. Ultimately, it is shown that small deformation theory overestimates different quantities such as bending moment, shear force, etc. for large deflection of the beams in comparison with large deformation theory. Finally, it is concluded that solution of small deformation theory is far from reality for large deflection of straight Euler–Bernoulli beams.  相似文献   

12.
Based on the homotopy analysis method, the nonlinear vibration of porous functionally graded material (FGM) conveying pipes under generalized boundary conditions was studied. Based on the power-law distribution of the FGM and the Voigt model, the physical properties of the porous pipe material were described. Under the Euler-Bernoulli beam theory and the von Kármán nonlinear theory, and by means of Hamilton’s variational principle, the dynamic control equations and generalized boundary conditions for porous FGM conveying pipes were established. The homotopy analysis method was used to solve the nonlinear vibration characteristics of the porous FGM conveying pipe under generalized boundary conditions. The numerical results show that, the translation spring has little effect on the critical velocity of instability, while the rotation spring increases the critical velocity of instability, making the system more stable; in the nonlinear system, the viscoelastic coefficient does not change the critical velocity; the pipe length, the power-law exponent and the porosity all influence the nonlinear free vibration of the porous FGM conveying pipe. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

13.
In this article, large deflection and rotation of a nonlinear beam subjected to a coplanar follower static loading is studied. It is assumed that the angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The governing equation of this problem is solved analytically for the first time using a new kind of analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). The present solution can be used in wide range of load and length for beams under large deformations. The results obtained from HAM are compared with those results obtained by fourth order Range Kutta method. Finally, the load‐displacement characteristics of a uniform cantilever under a follower force normal to the deformed beam axis are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:541–553, 2011  相似文献   

14.
A unified nonlocal strain gradient beam model with the thickness effect is developed to investigate the static bending behavior of micro/nano-scale porous beams. Size-dependent governing equations and corresponding analytical solutions for the bending of hinged-hinged beams are obtained by employing minimum total potential energy principle, the Navier solution method as well as the variational-consistent boundary conditions. For nonlocal strain gradient theory (NSGT) with thickness effect, virtual strain energy function of shear beams can contain additional nonlocal shear stress and high-order nonlocal shear stress related to the thickness direction in comparison with that of Euler–Bernoulli beam, so the coupling of the shear and thickness effects should be drawn huge attention. By means of detailed numerical analysis, it is found that, the stiffness-hardening effect is underestimated in NSGT without the thickness effect, and the stiffness-hardening and stiffness-softening effects of NSGT with the thickness effect can be not only length-dependent but also thickness-dependent. Interestingly, the generalized Young’s modulus depends on half-wave number, which means that the generalized Young’s modulus may be different due to applied load types. In the context of NSGT with the thickness effect, the deflection of Euler–Bernoulli beam predicted is smaller than that of shear beam, especially for thick beams. Furthermore, porosities distributed in the top or bottom of beams can possess a greater influence on the decrease of overall stiffness of beam than those distributed in the vicinity of the middle plane of beams.  相似文献   

15.
The large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The Von-Karman type nonlinear strain–displacement relationships are employed where the ends of the beam are constrained to move axially. The effects of the transverse shear deformation and rotary inertia are included based upon the Timoshenko beam theory. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A statically exact beam element which devoid the shear locking effect with displacement fields based on the first order shear deformation theory is used to study the geometric nonlinear effects on the vibrational characteristics of functionally graded beams. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law exponent, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible. Some new results for the nonlinear natural frequencies are presented in both tabular and graphical forms which can be used for future references.  相似文献   

16.
The present investigation deals with an undulating surface model for the motility of bacteria gliding on a layer of non‐Newtonian slime. The slime being the viscoelastic material is considered as a power‐law fluid. A hydrodynamical model of motility involving an undulating cell surface which transmits stresses through a layer of exuded slime to the substratum is examined. The non‐linear differential equation resulting from the balance of momentum and mass is solved numerically by a finite difference method with an iteration technique. The manner in which the various exponent values of the power‐law flow affect the structure of the boundary layer is delineated. A comparison is made of the power‐law fluid with the Newtonian fluid. For the power‐law fluid with respect to different power‐law exponent values, shear‐thinning and shear‐thickening effects can be observed, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Classical shear beams only consider the deflection resulting from sliding of parallel cross-sections, and do not consider the effect of rotation of cross-sections. Adopting the Kausel beam theory where cross-sectional rotation is considered, this article studies stability and free vibration of axially-loaded shear beams using Engesser’s and Haringx’s approaches. For attached mass at elastically supported ends, we present a unified analytical approach for obtaining a characteristic equation. By setting natural frequencies to be zero in this equation, critical buckling load can be determined. The resulting frequency equation reduces to the classical one when cross-sections do not rotate. The mode shapes at free vibration and buckling are given. The frequency equations for shear beam-columns with special free/pinned/clamped ends and carrying concentrated mass at the end can be obtained from the present. The influences of elastic restraint coefficients, axial loads and moment of inertia on the natural frequencies and buckling loads are expounded. It is found that the Engesser theory is superior to the Haringx theory.  相似文献   

19.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

20.
自然弯扭梁广义翘曲坐标的求解   总被引:1,自引:0,他引:1  
虞爱民  易明 《应用数学和力学》2004,25(10):1067-1075
提出了自然弯扭梁受复杂载荷作用时静力分析的一种理论方法,重点在于对控制方程的求解,其中考虑了与扭转有关的翘曲变形和横向剪切变形的影响.在特殊的情况下,可以比较容易地得到这些方程的解答,包括各种内力、应力、应变和位移的计算.算例给出了平面曲梁受水平和垂直分布载荷作用时广义翘曲坐标的求解方法.计算结果表明,求得的应力和位移的理论值和三维有限元结果非常接近.此外,该理论不限于具有双对称横截面的自然弯扭梁,同样可推广至具有一般横截面形状的情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号