首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A highly efficient asymmetric ring‐opening/cyclization/retro‐Mannich reaction of cyclopropyl ketones with aryl 1,2‐diamines has been realized using a chiral N,N′‐dioxide/ScIII catalyst. Benzimidazoles containing chiral side chains were generated under mild reaction conditions in excellent outcomes (up to 99 % yield and 97 % ee). This method also provides efficient access to chiral benzimidazole‐substituted amide and cycloheptene derivatives.  相似文献   

2.
A highly efficient asymmetric ring‐opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N′‐dioxide–scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99 % yield and 95 % ee. This is also the first example of one catalytic system working for the ring‐opening reaction of donor–acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.  相似文献   

3.
A highly efficient asymmetric ring‐opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N′‐dioxide–scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99 % yield and 95 % ee. This is also the first example of one catalytic system working for the ring‐opening reaction of donor–acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.  相似文献   

4.
A highly regio‐, diastereo‐ and enantioselective Michael addition–alkylation reaction between α‐substituted cyano ketones and (Z)‐bromonitrostyrenes has been realized by using a chiral N,N′‐dioxide as organocatalyst. A variety of substrates performed well in this reaction, and the corresponding multifunctionalized chiral 2,3‐dihydrofurans were obtained in up to 95 % yield with 95:5 dr and 93 % ee.  相似文献   

5.
A simple and efficient acylative kinetic resolution of racemic mandelic acid esters was accomplished with a chiral N,N’‐dioxide–scandium(III) complex under mild and base‐free reaction conditions. A variety of mandelic acid esters performed well in the reaction, obtaining both acylated products (up to 49% yield, 97% ee) and recovered substrates (up to 49% yield, 95% ee) in high enantioselectivities with perfect selectivity factors (up to 247). The enantioselective recognition and catalytic models were also proposed for the catalytic KR reaction.  相似文献   

6.
Proton abstraction of Ntert‐butoxycarbonyl‐piperidine (N‐Boc‐piperidine) with sBuLi and TMEDA provides a racemic organolithium that can be resolved using a chiral ligand. The enantiomeric organolithiums can interconvert so that a dynamic resolution occurs. Two mechanisms for promoting enantioselectivity in the products are possible. Slow addition of an electrophile such as trimethylsilyl chloride allows dynamic resolution under kinetic control (DKR). This process occurs with high enantioselectivity and is successful by catalysis with substoichiometric chiral ligand (catalytic dynamic kinetic resolution). Alternatively, the two enantiomers of this organolithium can be resolved under thermodynamic control with good enantioselectivity (dynamic thermodynamic resolution, DTR). The best ligands found are based on chiral diamino‐alkoxides. Using DTR, a variety of electrophiles can be used to provide an asymmetric synthesis of enantiomerically enriched 2‐substituted piperidines, including (after Boc deprotection) the alkaloid (+)‐β‐conhydrine. The chemistry was extended, albeit with lower yields, to the corresponding 2‐substituted seven‐membered azepine ring derivatives.  相似文献   

7.
A diastereo‐ and highly enantioselective dynamic kinetic resolution (DKR) of configurationally labile heterobiaryl ketones is described. The DKR proceeds by zinc‐catalyzed hydrosilylation of the carbonyl group, thus leading to secondary alcohols bearing axial and central chirality. The strategy relies on the labilization of the stereogenic axis that takes place thanks to a Lewis acid–base interaction between a nitrogen atom in the heterocycle and the ketone carbonyl group. The synthetic utility of the methodology is demonstrated through stereospecific transformations into either N,N‐ligands or appealing axially chiral, bifunctional thiourea organocatalysts.  相似文献   

8.
Chiral N‐sulfonyldiamine was successfully anchored on mesoporous MCM‐41 silica. The MCM‐41‐supported chiral N‐sulfonyldiamine was used as an efficient heterogeneous chiral ligand in the asymmetric transfer hydrogenation of ketones. This heterogeneous system offered satisfactory enantioselectivities up to 94 % with excellent conversions.  相似文献   

9.
A highly enantioselective [2,3] Wittig rearrangement of oxindole derivatives was realized by using a chiral N,N′‐dioxide/NiII complex as the catalyst under mild reaction conditions. A strong chiral amplification effect was observed, and allowed access to chiral 3‐hydroxy 3‐substituted oxindoles bearing allenyl groups in high yields and enantioselectivities (up to 92 % ee) by using a ligand with only 15 % ee. A reasonable explanation was given based on the experimental investigations and X‐ray crystal structures of enantiomerically pure and racemic catalysts. Moreover, the first catalytic kinetic resolution of racemic oxindole derivatives by a [2,3] Wittig rearrangement was realized with high efficiency and stereoselectivity.  相似文献   

10.
Highly efficient kinetic resolution of 2H‐azirines by an asymmetric imine amidation was achieved in the presence of a chiral N,N′‐dioxide/ScIII complex, thus providing a promising method to obtain the enantioenriched 2H‐azirine derivatives and protecting‐group free aziridines at the same time. It is rare to find an example of N1 of an oxindole participating in a reaction over C3. Moreover, chiral 2H‐azirines were stereospecifically transformed into an unprotected aziridine and α‐amino ketone.  相似文献   

11.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

12.
A chiral disulfonimide (DSI)‐catalyzed asymmetric reduction of N‐alkyl imines with Hantzsch esters as a hydrogen source in the presence of Boc2O has been developed. The reaction delivers Boc‐protected N‐alkyl amines with excellent yields and enantioselectivity. The method tolerates a large variety of alkyl amines, thus illustrating potential for a general reductive cross‐coupling of ketones with diverse amines, and it was applied in the synthesis of the pharmaceuticals (S)‐Rivastigmine, NPS R‐568 Hydrochloride, and (R)‐Fendiline.  相似文献   

13.
A Z‐selective rhodium‐catalyzed hydrothiolation of 1,3‐disubstituted allenes and subsequent oxidation towards the corresponding allylic sulfones is described. Using the bidentate 1,4‐bis(diphenylphosphino)butane (dppb) ligand, Z/E‐selectivities up to >99:1 were obtained. The highly atom‐economic desymmetrization reaction tolerates functionalized aromatic and aliphatic thiols. Additionally, a variety of symmetric internal allenes, as well as unsymmetrically disubstituted substrates were well tolerated, thus resulting in high regioselectivities. Starting from chiral but racemic 1,3‐disubstituted allenes a dynamic kinetic resolution (DKR) could be achieved by applying (S,S)‐Me‐DuPhos as the chiral ligand. The desired Z‐allylic sulfones were obtained in high yields and enantioselectivities up to 96 % ee.  相似文献   

14.
The asymmetric synthesis of alkynyl and monofluoroalkenyl isoindolinones from N‐methoxy benzamides and α,α‐difluoromethylene alkynes is enabled by C?H activation with a chiral CpRhIII catalyst. Remarkably, product formation is solvent‐dependent; alkynyl isoindolinones are afforded in MeOH (up to 86 % yield, 99.6 % ee) whereas monofluoroalkenyl isoindolinones are generated in iPrCN (up to 98:2 Z/E, 93 % yield, 86 % ee). Mechanistic studies revealed chiral allene and E‐configured alkenyl rhodium species as reaction intermediates. The latter is transformed into the corresponding Z‐configured monofluoroalkene upon protonation in the iPrCN system and into an alkyne by an unusual anti β‐F elimination in the MeOH system. Notably, kinetic resolution processes occur in this reaction. Despite the moderate enantiocontrol for the formation of the chiral allene, the Z‐monofluoroalkenyl isoindolinones and alkynyl isoindolinones were obtained in good enantiopurities by one or two sequential kinetic resolution processes.  相似文献   

15.
N‐Allyl, N‐cinnamyl, and N‐(3‐trimethylsilyl)propargyl derivatives of 4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐one (DIOZ) are prepared by lithiation of the parent DIOZ (with BuLi in THF) and reaction with the corresponding bromides (Scheme 1). Lithiation in the same solvent, with deprotonation by BuLi on the allylic or propargylic CH2 group at dry‐ice temperature, provides colorful solutions, which are either combined with aldehydes or ketones directly or after addition (with or without warming) of (Me2N)3TiCl or (i‐PrO)3TiCl. Conditions have thus been elaborated under which all three types of conjugated lithium compounds react in the γ‐position with respect to the oxazolidinone N‐atom: carbamoyl derivatives of enamines and allenyl amines are formed in yields ranging from 60 to 80% and with diastereoselectivities up to 98% (Schemes 2–5). The C=C bond of the N‐hydroxyalkenyl groups has (Z)‐configuration (products 5 and 8 ), the allene chirality axis has (M)‐configuration (products 9 ), and the addition to aldehydes and unsymmetrical ketones has taken place preferentially from the Si face. A mechanistic model is proposed that is compatible with the stereochemical outcome (assuming kinetic control and disregarding the presence of Li and Ti species in the reaction mixture; cf. L, M in Fig. 4). Hydrolysis of the enamine derivatives leads to lactols, oxidizable to γ‐lactones, with recovery of the crystalline oxazolidinone, as demonstrated in three cases (Scheme 6). Thus, the application of chiral oxazolidinone auxiliaries (cf. Figs. 1 and 2) has been extended to the overall enantioselective preparation of homoaldols.  相似文献   

16.
We have discovered that the racemization of configurationally stable, axially chiral 2,2′‐dihydroxy‐1,1′‐biaryls proceeds with a catalytic amount of a cyclopentadienylruthenium(II) complex at 35–50 °C. Combining this racemization procedure with lipase‐catalyzed kinetic resolution led to the first lipase/metal‐integrated dynamic kinetic resolution of racemic axially chiral biaryl compounds. The method was applied to the synthesis of various enantio‐enriched C1‐ and C2‐symmetric biaryl diols in yields of up to 98 % and enantiomeric excesses of up to 98 %, which paves the way for new developments in the field of asymmetric synthesis.  相似文献   

17.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

18.
The palladium‐catalyzed selective alkoxycarbonylation of enamide was studied using N‐vinylphthalimide as the model substrate. Both palladium (0) and palladium (II) compounds can be used as the catalyst precursors. It was found that the efficiency and the regioselectivity of the reaction depended remarkably on phosphine ligands and other reaction parameters such as solvent, substrate concentration, temperature and promoters. Good yields and high regioselectivities of either the branched or linear products were obtained under optimum reaction conditions. The primary optical yield (12.3%) of N‐Phthaloyl‐L ‐alanine methyl ester (2) was obtained using (S)‐(+)‐BNPPA as the chiral ligand. A possible reaction mechanism for the alkoxycarbonylation of N‐vinylphthalimide was also proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A new chiral ligand N‐p‐toluenesulfonyl‐2,2′‐dimethoxy‐6,6′‐diaminobiphenyl (Ts‐DMBDPPA) was prepared from 2,2′‐dimethoxy‐6,6′‐diaminobiphenyl via N‐tosylation. Its Ru(II) complex was effective catalysts for catalytic asymmetric transfer hydrogenation of aromatic ketones (with ee's up to 69.3%).  相似文献   

20.
Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α‐alkoxy‐β‐ketoesters in the presence of well‐defined, commercially available, chiral catalyst RuII–(Np‐toluenesulfonyl‐1,2‐diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of RuII‐ and RhIII‐tethered precatalysts extended this process to more‐challenging substrates that bore alkenyl‐, alkynyl‐, and alkyl substituents to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)‐2‐ethoxy‐3‐(4‐hydroxyphenyl)‐propanoate, which is an important pharmacophore in a number of peroxisome proliferator‐activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type‐II diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号