首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao XE  Suo YR 《Talanta》2008,76(3):690-697
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C(18) column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2x10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N=3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain.  相似文献   

2.
Based on the enhancing effects of norepinephrine (NE), epinephrine (EP), dopamine (DA) and 5‐hydroxytryptamine (5‐HT) on the chemiluminescence (CL) reaction between [Ag(HIO6)2]5? and luminol in alkaline solution, a high‐performance liquid chromatography (HPLC) method with CL detection was explored for the sensitive determination of monoamine neurotransmitters for the first time. The UV–visible absorption spectra were recorded to study the enhancement mechanism of monoamine neurotransmitters on the CL of [Ag(HIO6)2]5? and luminol reaction. The HPLC separation of NE, EP, DA and 5‐HT was achieved with isocratic elution using a mixture of aqueous 0.2% phosphoric acid and methanol (5:95, v/v) within 11.0 min. Under the optimized conditions, the detection limits of NE, EP, DA, and 5‐HT were 4.8, 0.9, 1.9 and 2.3 ng/mL, respectively, corresponding to 17.6–96.0 pg for 20 μL sample injection. The recoveries of monoamine neurotransmitters in rat brain were >95.6% with the precisions expressed by RSD <5.0%. The validated HPLC‐CL method was successfully applied for the quantification of NE, EP, DA and 5‐HT in rat brain. This method has promising potential for some biological and clinical investigations focusing on the levels of monoamine neurotransmitters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Lu J  Zhang S  Wang A  Zhang W  Jin L 《Talanta》2000,52(5):807-815
The carbon film based ring-disk dual electrodes in the thin-layer radial flow cell are used as the dual electrochemical detector (DECD) for liquid chromatography (LC) to determine the monoamine neurotransmitters. Cyclic voltammetric experiments show there has great difference in the reversibility of the oxidative reactions of dopamine and ascorbate. Therefore the ring-disk dual electrode arrangement in the radial flow cell can effectively remove the interference of ascorbate and determine dopamine in the LC-DECD. In order to obtain the better collection efficiency (CE) and better peak current of analytes in the LC-DECD, several operational parameters have been investigated: flow rate, pH and the working potentials. Under the optimum conditions, the method shows a good stability and reproducibility to determine dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), epinephrine (E) and 3,4-dihydroxyphenylacetic acid (DOPAC). The limits of detection are 0.1 pmol for DA, 0.1 pmol for NE, 0.1 pmol for 5-HT, 1.0 pmol for E and 0.1 pmol for DOPAC. The application of this method, coupled with microdialysis sampling, for the in vivo determination of the monoamine neurotransmitters in the striatum of the rat brain is satisfactory.  相似文献   

4.
We have developed and validated a sensitive method for the simultaneous determination of some monoamine neurotransmitters like dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in rat brain microdialysate using high-performance liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). Sensitivity enhancement has been achieved by amine derivatization with the reagent (5-N-succinimidoxy-5-oxopentyl)triphenylphosphonium bromide (SPTPP) under mild conditions. The use of the selected reaction monitoring (SRM) mode has allowed detection of the analytes at a concentration of 30 pM (lower limit of quantification, LLOQ, signal-to-noise ratio higher than 5) with an accuracy of ≤3.80% and a precision of ±7.39 (%CV) for all neurotransmitters. Derivatization improves resolution and chromatographic retention times (3 min) by lipophilization. Linearity has been good (R > 0.99) over a large concentration range (30–50,000 pM). The intra and inter-batch accuracy and precision were not greater than 4.8% and 6.4%, respectively. Therefore, the method was successfully applied for monitoring the concentration changes of neurotransmitters in microdialysis samples deriving from striatum rat brain region after amphetamine administration (3 mg kg−1, i.p.).  相似文献   

5.
 通过高效液相 电化学检测法测定了电针刺激家兔肾旁穴前后其血浆及脑组织中单胺类神经递质去甲肾上腺素 (NE)、肾上腺素 (E)、多巴胺 (DA)和 5 羟色胺 (5 HT)含量的变化 ;研究了神经递质的变化与家兔繁殖能力的关系。该实验采用ODS柱 ,流动相为V(0 0 2mol/L柠檬酸三钠 0 0 5mol/L磷酸氢二钠 )∶V(甲醇 ) =95∶5的溶液 ,用电化学检测器检测。实验证明 ,血浆及脑组织中NE ,E ,DA和 5 HT的含量在针刺肾旁穴前后都有了显著的变化 ,说明针刺能激发家兔脑内神经元的活动 ,导致相应的递质含量的变化 ,同时使得血浆中相应含量也发生变化。  相似文献   

6.
高效液相色谱同时检测生物样本中8种单胺类神经递质   总被引:2,自引:0,他引:2  
建立一种快速、准确测定生物样品中左旋多巴(L-DOPA)、去甲肾上腺素(NE)、肾上腺素(E)、多巴柯(DOPAC)、多巴胺(DA)、5-羟吲哚乙酸(5-HIAA)、高香草酸(HVA)及5-羟色胺(5-HT)8种递质含量的高效液相色谱- 电化学检测方法.使8种物质在25 min于单一流动相、单流速、单通道检测器情况下达到良好的分离效果.采用ESA MD-150色谱柱 (150 mm×3.2 mm, 3 μm),流动相为50 mmol/L柠檬酸、50 mmol/L无水乙酸钠、0.5 mmol/L 1-庚烷磺酸钠、0.5 mmol/L乙二胺四乙酸二钠、5 mmol/L三乙胺,pH 3.5,在甲醇浓度为5%~10%,流速0.3~0.5 mL/min, 柱温为30 ℃时,都能使8种物质很好分离,其中在甲醇浓度8%,流速0.4 mL/min,检测到前5种物质线性范围为0.005~10 nmol/L; 后3种0.001~10 nmol/L,8种物质相关系数在0.994~0.999之间,检出限在pmol/L水平;回收率在80.3%~102.1%之间,相对偏差在1.4%~4.8%之间.且对样本处理和保存方法进行了探讨.  相似文献   

7.
白洁  王妲  刘泽平  张佳琪  刘丽艳  韩艳梅 《色谱》2020,38(8):923-928
以邻苯二甲醛(o-phthalaldehyde,OPA)为衍生试剂,建立了柱前衍生-高效液相色谱(HPLC)同时测定血清中氨基酸类神经递质牛磺酸(Tau)、谷氨酸(Glu)、甘氨酸(Gly)、γ-氨基丁酸(γ-GABA)和单胺类神经递质多巴胺(DA)含量的分析方法。血清与乙醇以1:2的体积比混合,进行蛋白质沉淀后离心,取其上清液,氮吹至近干。前处理后的样品与OPA进行柱前衍生,衍生化产物采用Luna 5u C18色谱柱(250 mm×4.6 mm,5 μm)分离,以柠檬酸-乙酸钠缓冲溶液(pH 3.73)为流动相A、乙腈为流动相B进行梯度洗脱,流速为1.0 mL/min,柱温为30℃,检测波长为338 nm。5种神经递质在各自范围内线性关系良好(r2≥0.9866),检出限为0.10~0.40 μmol/L,不同加标水平下目标物的加标回收率为87.57%~115.31%,相对标准偏差均低于7.80%。方法操作简单,灵敏度高,精密度、线性关系和回收率等方法学指标较好,可实现血清中氨基酸类及单胺类神经递质的同时检测。  相似文献   

8.
We developed a novel derivatization reagent, (2R)-2,5-dioxopyrrolidin-1-yl-2,5,7,8-tetramethyl-6-(tetrahydro-2H-pyran-2-yloxy)chroman-2-carboxylate (NPCA), for electrochemical (EC) detection in HPLC. NPCA was synthesized from (R)-(+)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (alpha-CA), which exhibits intense EC response. NPCA successfully yielded alpha-CA derivatives of primary amines by a two-step derivatization procedure. Following pre-column derivatization with NPCA, a simultaneous determination of alpha-CA derivatives of neuroactive monoamines [dopamine (DA), epinephrine, and 5-hydroxytryptamine (5-HT)], their monoamine oxidase metabolites (3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindole-3-acetic acid) and their catechol-O-methyltransferase metabolites [3-methoxytyramine (3-MT) and normetanephrine (NMN)] was completely achieved using our HPLC-EC method. Using an HPLC equipped with coulometric electrode-array detection system, the resultant alpha-CA derivatives of NMN, 5-HT, DA and 3-MT showed intense EC responses, that were approximately 1.3, 1.4, 1.1 and 1.4-fold higher than the corresponding native forms, respectively. The detection limits were in the range of approximately 16-60 fmol on column (signal-to-noise ratio 3). The proposed HPLC method was applied to determine 5-HIAA, HVA, alpha-CA-5-HT and alpha-CA-DA in rat urine. As a consequence, these analytes were successfully determined with satisfactory precisions.  相似文献   

9.
Accurate measurement of trace levels of endogenous compounds remains challenging despite advancements in analytical technologies. In particular, monoamine neurotransmitters such as dopamine (DA) and serotonin (5-HT) are polar compounds with low molecular weights, which complicates the optimization of retention and detection on liquid chromatography-mass spectrometry (LC-MS). Microdialysis is an important sampling technique to collect extracellular fluid from the brain of living animals. However, the very low basal concentrations of the neurotransmitters, small sample volume (maximum 30 μL) and the absence of matrix-matching calibrators are limitations of a microdialysate as an analytical sample. In the present study, an LC-MS/MS method was developed and fully validated for the quantification of DA, 5-HT and their main metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), in microdialysates from the rat nucleus accumbens shell. To improve the method sensitivity and accuracy, on-line sample enrichment using silica stationary phase was employed, before which any other sample pretreatment was not performed. The validation results proved the method to be selective, sensitive, accurate and precise, with acceptable linearity within calibration ranges. The lower limits of quantification were 0.025, 0.1, 0.5, 25 and 2.5 ng/mL for 5-HT, DA, 5-HIAA, HVA and DOPAC, respectively. This is a powerful analytical method to determine endogenous concentrations of those compounds in microdialysates from the rat nucleus accumbens and will be very useful to further study on the pathophysiological functions of monoamine neurotramsmitters in vivo.  相似文献   

10.
Zhang W  Xie Y  Gu J  Ai S  Wang J  Yamamoto K  Jin L 《The Analyst》2004,129(3):229-234
The fabrication and application of a novel electrochemical detector (ED) with nano crystalline Ce-doped lead dioxide film chemically modified electrode (CME) for liquid chromatography (LC) were described. The Ce-doped PbO(2) film was characterized by X-ray diffractometer (XRD) and scanning tunnel microscope (STM). The electrochemical behaviors of (R)-Salsolinol ((R)-Sal) at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the CME exhibited an efficiently electrocatalytic effect on the current responses of (R)-Sal, (R)-N-methylsalsolinol ((R)-NMSal) and monoamine neurotransmitters. In LC-ED, all (R)-Sal, (R)-NMSal, dopamine (DA), norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of the nine analytes were over three orders of magnitude (R(2) > 0.995). The application of this method coupled with microdialysis sampling for the determination of (R)-Sal, (R)-NMSal and monoamine neurotransmitters in Parkinsonian patients' cerebrospinal fluid (CSF) was satisfactory.  相似文献   

11.
Shi B  Huang W  Cheng J 《Electrophoresis》2007,28(10):1595-1600
A sensitive fluorescence detection system with an Hg-lamp as the excitation source and a photon counter as the detector for microchip CE (MCE) has been developed. O-Phthaldialdehyde (OPA, lambda(ex) = 340 nm) was employed to label the catecholamine neurotransmitters such as dopamine (DA), norepinephrine (NE), and amino acid neurotransmitters including alanine (Ala), taurine (Tau), glycine (Gly), glutamic acid (Glu), and aspartic acid (Asp). The separation of seven derivatized neurotransmitters was successfully performed in MCE and the detection limits (S/N = 3) for DA, NE, Ala, Tau, Gly, Glu, and Asp were 0.85, 0.49, 0.23, 0.15, 0.13, 0.18, and 0.29 fmol, respectively. The system was then successfully applied for separation and determination of neurotransmitters in rat pheochromocytoma (PC 12) cells, and the average amounts of analyte per cell from a cell population were 2.5 fmol for DA, 3.3 fmol for Ala, 8.2 fmol for Tau, 4.0 fmol for Gly, and 1.9 fmol for Glu, respectively. By single-cell injection mode, electrophoresis separation and quantitative measurement of Glu in individual PC 12 cells was obtained. The average value of Glu per cell from single PC 12 cells analysis was found to be 3.5 +/- 3.1 fmol.  相似文献   

12.
就1993-2005年生物胺类神经递质包括多巴胺、肾上腺素、去甲肾上腺素、5-羟色胺的各种电化学检测方法的应用研究和发展方向进行了评述。引用文献58篇。  相似文献   

13.
BH4 is the natural cofactor of two important amino acid hydroxylases: tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine from tyrosine, and tryptophan hydroxylase, the rate-limiting enzyme in the biosynthesis of serotonin from …  相似文献   

14.
A liquid chromatography–electrospray ionization tandem mass spectrometry method has been developed to perform the determination of 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) and their metabolites, i.e., 5-hydroxyindole-3-acetic acid (5-HIAA), 4-hydroxy-3-methoxyphenylglycol (MHPG) sulfate, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat brain tissue. Analytes were separated on a Thermo C18 column (4.6 mm × 250 mm, 5 μm, SN: 1245575T, Thermo electron corporation, USA) with a mobile phase of 0.05% formic acid/acetonitrile (92:8 for ESI+, 82:18 for ESI?, v/v) at the flow-rate of 0.8 mL min?1. The LC system was coupled to a Waters Micromass Quattro Premier XE tandem quadruple mass spectrometer. MS acquisition of 5-HT, NE and DA was performed in positive electrospray ionization multiple reaction monitoring (MRM) mode, while negative electrospray ionization MRM mode was used to monitor their metabolites. The calibration curves were linear within the concentration range of 4–4,450 ng mL?1 for 5-HT, 4–4,110 ng mL?1 for NE and 4–4,100 ng mL?1 for DA (≥ 0.999). The limit of quantitation was 4 ng mL?1. 5-HIAA, MHPG, DOPAC and HVA have good linearity within the range of 12–1,000 ng mL?1(≥ 0.998) and the limit of quantitation was 12 ng mL?1. The intra- and inter-day RSD were lower than 8.45%. The method is sensitive, fast, accurate and usable for quantity determination of monoamine neurotransmitters and their metabolites in neuropsychiatric diseases.  相似文献   

15.
谭炳炎  郑琳  冯翔 《分析测试学报》2006,25(2):90-92,96
建立了高效液相色谱/电化学检测法测定大鼠脑组织和血液中单胺递质及其代谢产物的方法。能同时测定去甲肾上腺素(NE)、肾上腺素(E)、3,4-二羟基苯乙酸(DOPAC)、多巴胺(DA)、高香草酸(HAV)、5-羟色胺(5-HT),并能和内标3,4-二羟卞胺(DHBA)分离良好。本方法快速、简便,回收率为92%-105%,线性范围2.8-680ng/mL,检出限为0.05ng(S/N=3)。本方法已应用在服用中药的大鼠下丘脑组织及血液的测定中,数据显示,本法能满足测定要求。  相似文献   

16.
An electrochemical sensor based on carbon nanotubes (CNTs)-ionic liquid (IL) composite has been developed for the simultaneous determination of serotonin (5-HT) and dopamine (DA). The CNTs-IL composite modified electrode presents excellent selectivity and sensitivity towards 5-HT and DA and eliminates the interference of ascorbic acid. The parameters which influence the determination of 5-HT and DA have been investigated. Under optimized conditions, linear calibration graphs were obtained in the range from 20 nM to 7 µM, with a detection of limit of 8 nM, for 5-HT, and in the range from 0.1 to 12 µM, with a detection of limit of 60 nM, for DA. The electrode has been applied to the assay of 5-HT and DA in human blood serum with good results.  相似文献   

17.
径向电场调制毛细管电泳法用于神经递质分离   总被引:5,自引:0,他引:5  
朱英  陈义 《分析化学》2001,29(6):661-663
利用双向电场控制毛细管电泳系统,考察了神经递质的分离。在pH2.5的0.01mol/L磷酸盐缓冲体系中,通过加入20%(V/V)正丙醇,改善了多巴胺和5-羟色胺的分离效果,但仍不太理想。通过施加径向电场,可进一步提高分离度。本研究不仅拓宽了径向电场调控的样品分离范围,而且为生物活性物质的痕量分析提供了参考依据。  相似文献   

18.
建立了胶束电动毛细管色谱结合电化学安培检测同时分析中药马齿苋中多巴胺和去甲肾上腺素的方法。考察了缓冲液的浓度、pH值、十二烷基硫酸钠(SDS)浓度以及工作电极电势对分离检测的影响。在优化的条件下,多巴胺和去甲肾上腺素在1.0×10-6~5 0×10-4mol/L范围内有良好线性,浓度检测限(S/N=3)分别为8 7×10-7mol/L和4 2×10-7mol/L,质量检测限分别为1 45fmol和0 41fmol。该方法组分定性可靠,不需要衍生处理,选择性好。将该法应用于中药马齿苋样品的分析,获得了较好的结果。  相似文献   

19.
Diao P  Yuan H  Huo F  Chen L  Xiao D  Paau MC  Choi MM 《Talanta》2011,85(3):1279-1284
A simple and sensitive method has been developed for simultaneous analysis of three catecholamines: dopamine (DA), epinephrine (EP) and norepinephrine (NE) in urine by capillary electrophoresis (CE) coupled with in-column fiber-optic light-emitting diode-induced fluorescence detection (ICFO-LED-IFD). Fluorescein isothiocyanate was used as the fluorescence tagged reagent for derivatization of DA, EP and NE. The CE conditions for separation of these catecholamines were systematically investigated. It was found that catecholamines could be more effectively separated by adding β-cyclodextin (β-CD) and acetonitrile (ACN) to a background electrolyte (BGE) of sodium borate. The migration times are 10.61, 10.83 and 11.14 min for DA, EP and NE, respectively and the catecholamines are completely separated within 11.5 min under the optimal condition of a BGE containing 10% v/v ACN, 20 mM β-CD and 20 mM sodium borate (pH 9.5), and an applied voltage of 13 kV. The relative standard deviations of migration time and peak area for these catecholamines are less than 0.16 and 2.0%, respectively. The limit of quantifications (LOQs) for DA, EP and NE are 3.5, 1.0 and 3.1 nM whereas the limit of detections (LODs) for DA, EP and NE are 1.0, 0.3 and 0.9 nM, respectively. Our proposed CE method provides low LOQ and LOD values. This CE-ICFO-LED-IFD methodology has been successfully applied to analyze catecholamines in human urine samples with good accuracy and satisfactory recovery.  相似文献   

20.
It has been reported that monoamine neurotransmitters can be produced by gut microbiota, and that several related metabolites of amino acids in these pathways are associated with nervous system (NVS) diseases. Herein, we focused on three pathways, namely, phenylalanine (Phe), tryptophan (Trp), and glutamic acid (Glu), and established an underivatized liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of nineteen monoamine neurotransmitters and related metabolites in the gut microbiota. The neurotransmitters and related metabolites included Phe, tyrosine (Tyr), l-dopa (Dopa), dopamine (DA), 3-methoxytyramine, Trp, hydroxytryptophan, 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), kynurenine (KN), kynurenic acid (KYNA), melatonin, tryptamine (TA), indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), indolyl-3-propionic acid (IPA), Glu, gamma-aminobutyric acid (GABA), and acetylcholine (Ach). A fluoro-phenyl bonded column was used for separation, and the mobile phase consisted of methanol:acetonitrile (1:1) and water, with 0.2% formic acid in both phases. The compounds exhibited symmetric peak shapes and sufficient sensitivity under a total analysis time of 8.5 min. The method was fully validated with acceptable linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The results showed that neurotransmitters, such as Dopa, DA, 5-HT, GABA, and Ach, were present in the gut microbiota. The metabolic pathway of Trp was disordered under depression, with lower levels of 5-HT, 5-HIAA, KN, KYNA, TA, ILA, IAA, IPA, and Glu, and a higher ratio of KYNA/KN. In addition, some first-line NVS drugs, such as sertraline, imipramine, and chlorpromazine, showed regulatory potential on these pathways in the gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号