首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
挤出平缝口模通常用于加工膜和片材,对产品厚度的一致性有很高要求。本文给出了结合聚合物成型模拟技术、设计灵敏度分析和数值优化技术的口模形状优化设计方法。以最小压力降为目标函数,口模出口处任意点的速率与出口已知速率相对误差的平方和小于容许误差为约束函数,口模形状参数为优化设计变量,给出了目标函数的表达式,推导了日标函数、约束函数对优化设计变量的灵敏度公式。利用灵敏度分析和基于梯度的优化算法即序列二次规划算法(SQP法)求解最优设计参数。通过算例表明,应用该法进行口模优化设计可以减小压力降和口模出口速率变化率。  相似文献   

2.
基于无网格数值求解技术的二维连续体结构拓扑优化设计   总被引:2,自引:2,他引:0  
将无网格径向点插值法(RPIM)引入到连续体结构拓扑优化设计中。在优化问题中,选取节点的相对密度作为设计变量,以结构的柔度最小化作为目标函数,基于带惩罚的各向同性固体材料模型(SIMP)建立了结构拓扑优化的数学模型,推导了目标函数和体积约束的灵敏度,利用优化准则法进行求解。算例表明了应用无网格径向点插值法进行结构拓扑优化设计的可行性和有效性,同时表明选取节点的相对密度作为设计变量可以有效地克服拓扑优化中的棋盘格现象。  相似文献   

3.
基于虚荷载变量的形状优化和灵敏度分析   总被引:5,自引:0,他引:5  
基于选择施加在结构“控制点”上的虚荷载作为优化设计变量,针对一种新的承受约束的形状优化数值方法进行了研究。借助于节点位移与虚荷载之间的线性关系,提出了一种新的计算灵敏度系数的解析方法。利用节点移动速度域概念构造了优化新形状产生的计算公式,以结构中节点的最大应力最小化作为优化目标,通过控制网格结点的最大位移量,较好地解决了单元网格在形状优化中的扭曲问题。对三个不同的实例成功地完成了形状优化。  相似文献   

4.
本文提出了一种结构几何优化设计的综合法,它吸收了数学规划法与准则法的长处,体现了两者的结合。同时包括杆件截面和节点坐标两类设计变量。在该方法中,将目标函数作二次逼近,约束函数作线性逼近,为避免求目标函数的Hessian阵及其逆,用变尺度法中相应公式所定义的矩阵去逼近Hessian阵的逆阵,使计算工作量大为减少。将Kuhn-Tucker条件应用于所提的问题,便把K-T乘子的确定等价为一个标准的二次规划。本方法具有规范、使用方便、迭代次数少等优点。它同样适用于一般结构的形状优化设计。  相似文献   

5.
预应力索-桁架结构形状优化设计   总被引:4,自引:0,他引:4  
就预应力索-桁架结构形状优化设计问题,考虑了施加预应力阶段、预应力与荷载共同作用阶段的性态约束条件,建立了设计变量包括截面尺寸、索力值、杆件及索节点坐标的形状优化数学模型;在求解方法上将设计变量分为两个子空间:第一子空间为索力值和截面尺寸优化设计空间,第二子空间为形状优化设计空间; 第一子空间给出新的求解方法以减轻结构重量,第二子空间用节点渐进法优化结构形状和布索位置以增加结构刚度.算例表明,该方法能使结构重量逐步减轻,结构刚度不减,形状逐步达到最优.  相似文献   

6.
将无网格Galerkin法引入正交各向异性薄板的结构拓扑优化中,建立了以节点相对密度为设计变量、以结构柔度为目标函数的结构拓扑优化模型;采用罚函数施加本质边界条件,结合固体各向同性惩罚插值模型和OC优化准则,推导了目标函数的灵敏度分析算法;利用数值算例验证了所建模型及算法的可行性,完成了单载荷工况、多载荷工况下各向异性材料的拓扑优化设计,探讨了材料性能与铺设角度对各向异性薄板结构拓扑优化结果的影响。结果表明,各向异性薄板在弹性模量较小的方向上,材料分布较多,且拓扑结构呈现周期性变化。  相似文献   

7.
基于计算力学中的结构优化思想,应用一种新型的显式几何更新算法,自行编制C++程序,实现地下管道形状设计的自动优化。管道内的流体假设为牛顿不可压缩流,并考虑惯性项。优化区域主要为管道竖直方向和水平方向的过渡段。形状优化的设计变量是几何边界的有限元节点坐标,优化目标是实现流体黏性能耗散的最小化。优化过程基于形状梯度,即通过形状敏感度分析来求解目标函数相对于设计变量的偏导数。所使用的显式几何更新算法既可以通过网格清晰描述形状,也可以大范围地自动更新网格。详细介绍了地下管道自动形状优化过程的关键步骤。通过数值算例探讨了不同注入速度、密度和黏度对其最优形状的影响。  相似文献   

8.
随机参数连续体结构的动力学拓扑优化   总被引:2,自引:0,他引:2  
崔明涛  陈建军  姜培刚 《应用力学学报》2005,22(2):237-242,i008
构造了基于概率的连续体结构动力特性拓扑优化设计数学模型,以结构的形状拓扑信息为设计变量,结构总重量极小化为目标函数,满足结构多阶固有频率约束的可靠性要求为约束条件。利用分布函数法对模型中的可靠性约束进行了等价化处理。采用了渐进结构优化(ESO)的求解策略与方法。通过算例验证了文中所提出的设计模型及求解策略与方法的合理性和有效性。  相似文献   

9.
乔心州  王兵  彭先龙 《应用力学学报》2020,(1):176-182,I0012
采用区间变量描述不确定参数,提出一种桁架结构非概率可靠性形状优化方法。建立了以截面尺寸和节点坐标为设计变量,以结构重量为目标函数,具有非概率可靠性指标约束的桁架结构形状优化数学模型。采用量纲归一化对截面尺寸和节点坐标进行了变量统一;运用均值点法对功能函数进行泰勒线性近似求解得到相应的非概率可靠性指标,并采用序列二次规划算法对优化模型进行求解。三个算例分析结果表明,算例均能快速稳定地收敛到最优解,结果符合工程结构设计经验,验证了本文所提方法的准确性和有效性。  相似文献   

10.
本文讨论以结构重量为目标函数,以杆件截面积和节点坐标为设计变量,以杆件应力和稳定性为约束条件的桁架优化设计,利用乘子法修改杆件截面积和拉格朗日乘子,以梯度法修改节点坐标。梯度法的步长则以满应力法确定。算例表明,本文方法是比较有效的。  相似文献   

11.
Material property evolution during processing is governed by the evolution of the underlying microstructure. We present an efficient technique for tailoring texture development and thus, optimizing properties in forming processes involving polycrystalline materials. The deformation process simulator allows simulation of texture formation using a continuum representation of the orientation distribution function. An efficient multi-scale sensitivity analysis technique is then introduced that allows computation of the sensitivity of microstructure field variables such as slip resistances and texture with respect to perturbations in macro-scale forming parameters such as forging rates, die shapes and preform shapes. These sensitivities are used within a gradient-based optimization framework for computational design of material property distribution during metal forming processes. Effectiveness of the developed computational scheme is demonstrated through computationally intensive examples that address control of properties such as Young’s modulus, strength and magnetic hysteresis loss in finished products.  相似文献   

12.
In most of structural optimization approaches, finite element method (FEM) has been employed for structural response analysis and sensitivity calculation. However, the approaches generally suffer certain drawbacks. In shape optimization, cumbersome parameterization of design domain is required and time consuming remeshing task is also necessary. In topology optimization, design results are generally restricted on the initial design space and additional post-processing is required for communication with CAD systems. These drawbacks are due to the use of different mathematical languages in design or geometric modeling and numerical analysis: spline basis functions are used in design and geometric modeling whereas Lagrangian and Hermitian polynomials in analysis. Isogeometric analysis is a very attractive and promising alternative to overcome the limitations resulting from the use of the conventional FEM in structural optimization. In isogeometric analysis, the same spline information such as control points and spline basis functions which represent geometries in CAD systems are also used in numerical analysis. Such unification of the mathematical languages in CAD, analysis and design optimization can resolve the issues mentioned above. In this work, structural shape optimization using isogeometric analysis is studied on 2D and shell problems. The proposed framework is extended to topology optimization using trimming techniques. New inner fronts are introduced by trimming spline curves in topology optimization. Trimmed surface analysis which was recently proposed to analyze arbitrary complex topology problems is employed for topology optimization. Some benchmarking problems in shape and topology optimization are treated using the proposed approach.  相似文献   

13.
粘塑性材料成形过程的有限元分析   总被引:1,自引:0,他引:1  
为了确定大型铝机轮等温锻造的变形力及揭示轮缘处形成折叠的原因,本文用刚一粘塑性有限元法对模拟件的成形过程进行了全面数值模拟。模拟计算和实验结果表明,有限元确定的等温锻造过程的变形力,可作为选择设备吨位的依据,根据刚-粘塑性有限元法所预测的金属流动规律,发现零件的形状很大程度上决定了轮缘处容易形成折叠。适当改进模具结构和改善润滑条件,有助于避免折叠缺陷的产生。  相似文献   

14.
Evolution of properties during processing of materials depends on the underlying material microstructure. A finite element homogenization approach is presented for calculating the evolution of macro-scale properties during processing of microstructures. A mathematically rigorous sensitivity analysis of homogenization is presented that is used to identify optimal forging rates in processes that would lead to a desired microstructure response. Macro-scale parameters such as forging rates are linked with microstructure deformation using boundary conditions drawn from the theory of multi-scale homogenization. Homogenized stresses at the macro-scale are obtained through volume-averaging laws. A constitutive framework for thermo-elastic–viscoplastic response of single crystals is utilized along with a fully-implicit Lagrangian finite element algorithm for modelling microstructure evolution. The continuum sensitivity method (CSM) used for designing processes involves differentiation of the governing field equations of homogenization with respect to the processing parameters and development of the weak forms for the corresponding sensitivity equations that are solved using finite element analysis. The sensitivity of the deformation field within the microstructure is exactly defined and an averaging principle is developed to compute the sensitivity of homogenized stresses at the macro-scale due to perturbations in the process parameters. Computed sensitivities are used within a gradient-based optimization framework for controlling the response of the microstructure. Development of texture and stress–strain response in 2D and 3D FCC aluminum polycrystalline aggregates using the homogenization algorithm is compared with both Taylor-based simulations and published experimental results. Processing parameters that would lead to a desired equivalent stress–strain curve in a sample poly-crystalline microstructure are identified for single and two-stage loading using the design algorithm.  相似文献   

15.
A novel, fully-analytical design sensitivity formulation for transient, turbulent, free surface flows is derived and implemented in the context of finite element analysis. The time-averaged, turbulent form of the Navier–Stokes equations are solved using a mixing length model, in conjunction with the volume of fluid (VOF) method to model the free surface movement. The design derivatives of these governing equations are computed and solved to find the analytical sensitivities of the fluid position, velocity and pressure fields with respect to shape design variables. The computational efficiency produced by evaluating the sensitivities analytically is demonstrated. The design of the runner and gating system of a simple block casting is presented as an example application for using sensitivity information in design. The analytical sensitivity routine is coupled to a numerical optimizer to yield an automated method for optimal design of the casting rigging system. The results produce runner shapes which eliminate mold-gas aspiration. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.  相似文献   

17.
In this paper, we propose the first attempt to perform shape sensitivity analysis for two-dimensional coupled atomistic and continuum problems using bridging scale decomposition. Based on a continuum variational formulation of the bridging scale, the sensitivity expressions are derived in a continuum setting using both direct differentiation method and adjoint variable method. To overcome the issue of discontinuity in shape design due to the discrete nature of the molecular dynamics (MD) simulation, we define design velocity fields in a way that the shape of the MD region does not change. Another major challenge is that the discrete finite element (FE) mass matrix in bridging scale is not continuous with respect to shape design variables. To address this issue, we assume an evenly distributed mass density when evaluating the material derivative of the FE mass matrix. In order to support accuracy verification of sensitivity results using overall finite difference method, we use regular-shaped finite elements and only allow shape change in one direction in our example problems, so that design perturbations can be made to the discrete FE mass matrix. However, the sensitivity formulation is sufficiently general to support irregular-shaped finite elements and arbitrary design velocity fields. The sensitivity analysis results, verified using overall finite difference method, reveal the impact of macroscopic shape design changes on microscopic atomistic responses.  相似文献   

18.
To reduce the computation cost of finite element analyses aiding die design for sheet metal stamping, a hybrid membrane/shell method was developed to determine the springback of anisotropic sheet metal undergoing axisymmetric loading. The hybrid membrane/shell method uses a membrane model to analyze the stamping operation. The bending/unbending strains and stresses varying through thickness are calculated analytically from the incremental shape determined by the membrane analysis. These bending strains and stresses and the final membrane shape are used with a shell finite element model to unload the sheet and calculate springback. The accuracy of the springback prediction with the hybrid method was verified against the springback of 2036-T4 aluminum and a DQAK steel sheet drawn into a cup. It was found that, in comparison with a full shell model, a minimum of 50% CPU time saving and a comparable accuracy was achieved when the hybrid method was used to predict springback.  相似文献   

19.
A method to determine three-dimensional die shapes from extrudate swell and vice versa is presented using a three-dimensional Galerkin finite element method based on a streamlined formulation with the fluid velocities and pressures represented by triquadratic and trilinear basis functions respectively. The three-dimensional streamlined method, an extension of the two-dimensional formulation, uses successive streamsurfaces to form a boundary-conforming co-ordinate system. This produces a fixd, computational domain leaving the spatial location of the elements as unknowns to be determined with the standard primary variables (u, v, w, p). The extrudate produced by a die of a given shape is considered for moderate Reynolds numbers. Finally, the method is extended to address the problem of die design, where a die profile is sought to produce a target extrudate shape.  相似文献   

20.
ABSTRACT Accuracy of finite element based shape design sensitivity analysis, for use in shape design optimization, is analyzed and tested. A shape design sensitivity formulation that uses stress averaging to treat stress constraint func-tionals is presented. A smooth boundary parameterization is introduced to avoid the "Babuska paradox" and to improve accuracy of design sensitivity analysis. Accuracy of design sensitivity analysis with displacement and hybrid stress finite element formulations is compared. Good accuracy is obtained using higher order displacement finite elements, such as linear stress triangular and 8-noded isoparametric elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号