首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Guo N  Huang Y  You H  Yang M  Song Y  Liu K  Zheng Y 《Inorganic chemistry》2010,49(23):10907-10913
A novel white-light-emitting phosphor Ca(9)Lu(PO(4))(7):Eu(2+),Mn(2+) has been prepared by solid-state reaction. The photoluminescence properties indicate that there is an efficient energy transfer from the Eu(2+) to Mn(2+) ions via a dipole-quadrupole reaction. The obtained phosphor exhibits a strong excitation band between 250 and 430 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip. Upon excitation of UV light, white light is realized by combining a broad blue-green emission band at 480 nm and a red emission band at 645 nm attributed to the Eu(2+) and Mn(2+) ions. The energy-transfer efficiency and critical distance were also calculated. Furthermore, the phosphors can generate lights from blue-green through white and eventually to red by properly tuning the relative ratio of the Eu(2+) to Mn(2+) ions through the principle of energy transfer. Preliminary studies showed that the phosphor might be promising as a single-phased white-light-emitting phosphor for a UV white-light LED.  相似文献   

2.
Huang CH  Chen TM 《Inorganic chemistry》2011,50(12):5725-5730
Eu(2+)-activated Sr(8)MgY(PO(4))(7) and Sr(8)MgLa(PO(4))(7) yellow-emitting phosphors were successfully synthesized by solid-state reactions for applications in excellent color rendering index white light-emitting diodes (LEDs). The excitation and reflectance spectra of these phosphors show broad band excitation and absorption in the 250-450 nm near-ultraviolet region, which is ascribed to the 4f(7) → 4f(6)5d(1) transitions of Eu(2+). Therefore, these phosphors meet the application requirements for near-UV LED chips. Upon excitation at 400 nm, the Sr(8)MgY(PO(4))(7):Eu(2+) and Sr(8)MgLa(PO(4))(7):Eu(2+) phosphors exhibit strong yellow emissions centered at 518, 610, and 611 nm with better thermal stability than (Ba,Sr)(2)SiO(4) (570 nm) commodity phosphors. The composition-optimized concentrations of Eu(2+) in Sr(8)MgLa(PO(4))(7):Eu(2+) and Sr(8)MgY(PO(4))(7):Eu(2+) phosphors were determined to be 0.01 and 0.03 mol, respectively. A warm white-light near-UV LED was fabricated using a near-UV 400 nm chip pumped by a phosphor blend of blue-emitting BaMgAl(10)O(17):Eu(2+) and yellow-emitting Sr(8)MgY(PO(4))(7):0.01Eu(2+) or Sr(8)MgLa(PO(4))(7):0.03Eu(2+), driven by a 350 mA current. The Sr(8)MgY(PO(4))(7):0.01Eu(2+) and Sr(8)MgLa(PO(4))(7):0.03Eu(2+) containing LEDs produced a white light with Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.348, 0.357) and (0.365, 0.328), warm correlated color temperatures of 4705 and 4100 K, and excellent color rendering indices of 95.375 and 91.75, respectively.  相似文献   

3.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   

4.
WR Liu  CH Huang  CW Yeh  JC Tsai  YC Chiu  YT Yeh  RS Liu 《Inorganic chemistry》2012,51(18):9636-9641
Novel single-phased white light-emitting KCaY(PO(4))(2):Eu(2+),Mn(2+) phosphors for light-emitting diode (LED) applications were synthesized by conventional solid-state reaction. The emission hue could be controlled by tuning the Eu(2+)/Mn(2+) ratio via the energy transfer; the the emission hue of KCaY(PO(4))(2):Eu(2+),Mn(2+) varied from blue (0.1853, 0.2627) to white-light (0.3350, 0.3203) and eventually to purple (0.3919, 0.2867). The mechanism of energy transfer from a sensitizer Eu(2+) to an activator Mn(2+) in KCaY(PO(4))(2):Eu(2+),Mn(2+) phosphors was demonstrated to be an electric dipole-quadrupole interaction. Combining a NUV 405-nm chip and a white-emitting KCaY(PO(4))(2):1%Eu(2+),4%Mn(2+) phosphor produced a white-light NUV LED, demonstrating CIE chromaticity coordinates of (0.314, 0.329) and a color temperature of 6507 K.  相似文献   

5.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

6.
Eu(2+) singly and Eu(2+), Mn(2+) co-doped Sr(2)Mg(3)P(4)O(15) exhibit not only the well known blue emission band of Eu(2+) peaking at 448 nm but also a new band at 399 nm in violet. They are attributed to Eu(2+) on different Sr(2+) sites. The Eu(2+) for the violet band can transfer energy to the red emitting Mn(2+) more efficiently than Eu(2+) for the blue band. The new Eu(2+) band could enable Sr(2)Mg(3)P(4)O(15):Mn(2+), Eu(2+) to be a promising phosphor for enriching the red component of white LEDs.  相似文献   

7.
Ce(3+) and Eu(2+) singly doped and Ce(3+)/Eu(2+)-codoped Ca(7)Mg(SiO(4))(4) phosphors are synthesized by the conventional solid state reaction. The Ce(3+) activated sample exhibits intense blue emission under 350 nm excitation, the composition-optimized Ca(7)Mg(SiO(4))(4)?:?4%Ce(3+) shows better color purity than the commercial blue phosphor, BaMgAl(10)O(17)?:?Eu(2+) (BAM?:?Eu(2+)) and exhibits superior external quantum efficiency (65%). The Ca(7)Mg(SiO(4))(4)?:?Eu(2+) powder shows a broad emission band in the wavelength range of 400-600 nm with a maximum at about 500 nm. The strong excitation bands of the Ca(7)Mg(SiO(4))(4)?:?Eu(2+) in the wavelength range of 250-450 nm are favorable properties for applications as light-emitting-diode conversion phosphors. Furthermore, the energy transfer from the Ce(3+) to Eu(2+) ions is observed in the codoped samples, the resonance-type energy transfer is determined to be due to the dipole-dipole interaction mechanism and the critical distance is obtained through the spectral overlap approach and concentration quenching method.  相似文献   

8.
电荷补偿对红色LED用荧光粉体的荧光性能改进   总被引:3,自引:2,他引:3  
通过高温动态球磨固相法, 采用三种电荷补偿方式: (a) 3Ca2+/Sr2+→2Eu3+/Gd3++空穴; (b) 2Ca2+/Sr2+→2Eu3+/Gd3++M+(M+=Li+, Na+, K+中的一种或多种离子); (c) Ca2+/Sr2+→2Eu3+/Gd3++X-(X-=F-, Cl-, Br-, I-), 制备了红色发光二极管(LED)荧光粉体Ca0.54Sr0.16-δEu0.08Gd0.12(MoO4)0.2(WO4)0.8(δ=0-0.16). 研究表明, 方法(b)是一种较优的电荷补偿方式. 利用此荧光粉和390-405 nm发射LED芯制备了红色LED, 当正向驱动电流为20 mA时, 色坐标为x=0.66, y=0.33; 色纯度100%; 光强达6200 cd·m2; 发光效率约为95 lm·W-1. 器件的色坐标和显色指数等参数随正向驱动电流的变化起伏很小, 颜色稳定. 该红光荧光粉在新一代白色LED照明领域具有广阔应用前景.  相似文献   

9.
掺杂铕和铽的卤硼酸盐荧光体的制备及光谱特征   总被引:1,自引:0,他引:1  
采用高温固相法在空气中合成了一系列掺杂稀土离子的卤硼酸盐荧光体, 研究了其发光性质和基质组成对稀土离子共掺杂的荧光体发光性质的影响. 研究结果表明, 在Eu3+和Tb3+共掺杂的体系中存在电子转移, 因此出现了Eu3+, Eu2+和 Tb3+共存于同一基质共同发射的现象. Ce3+对Eu2+和Tb3+具有敏化作用, 可增强其发射强度. 基质的组成对稀土离子的发射峰位和发射强度有明显影响.  相似文献   

10.
利用高温固相反应制备了Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)(x=0,0.05,0.10,0.15,0.20,0.25,0.30,0.325,0.35,0.375,0.40,0.425)一系列试样,系统研究了Mn~(2+)取代基质中Ca~(2+)进入晶格中对其晶胞参数和光谱特性影响。Mn~(2+)以类质同相替代Ca~(2+)进入晶体晶格中,形成了连续固溶体,试样均为三斜晶系,P空间群。随着Mn~(2+)掺杂量增加,晶胞参数(a,b,c,γ)和晶胞体积V均呈线性递减,且a轴减幅最大,b轴最小,晶面夹角(α,β)呈线性递增。在357 nm激发下,获得的Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)发射光谱均有Eu~(2+)的4f→5d跃迁产生的433 nm和Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁产生的567 nm两个宽带谱组成。在荧光粉Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)中,Eu~(2+)与Mn~(2+)间存在能量传递,Eu~(2+)→Mn~(2+)间能量传递的临界距离R_(Eu-Mn)=0.947 1 nm,Eu~(2+)→Mn~(2+)能量传递过程为电四极-电四极的多极矩相互作用。通过改变Mn~(2+)掺杂量,在紫外芯片的有效激发下,荧光粉的发射光颜色可从蓝光区(0.158 2,0.086 0)逐渐移至近白光区(0.295 3,0.298 9),可获得一种紫外激发适用于白光LED的单一组分白色荧光粉。  相似文献   

11.
采用高温固相法合成Sr2-mMg1-nSi2O7∶mTb3+,nLi+(m=0.03~0.50,n=m)系列荧光粉。使用X射线衍射仪和荧光光谱仪对样品的物相和发光性质进行了表征。在377 nm紫外光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于490 nm,542 nm,590 nm和613 nm处,分别对应于Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射。调节Tb3+离子掺杂浓度,可实现荧光粉的发光颜色从蓝到白、黄、绿的可调发射;名义组成为Sr1.95Mg0.95Si2O7∶0.05Tb3+,0.05Li+的荧光粉在紫外光(377 nm)激发下发白光,其色坐标(0.322,0.317)接近纯白光(0.33,0.33),是一种潜在的LED用单基质白光荧光粉。  相似文献   

12.
Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors   总被引:1,自引:0,他引:1  
Red or yellow phosphors excited by a blue light-emitting diode are an efficient source of white light for everyday applications. Many solid oxides and nitrides, particularly silicon nitride-based materials such as M(2)Si(5)N(8) and MSi(2)O(2)N(2) (M = Ca, Sr, Ba), CaAlSiN(3), and SiAlON, are useful phosphor hosts with good thermal stabilities. Both oxide/nitride and various cation substitutions are commonly used to shift the emission spectrum and optimize luminescent properties, but the underlying mechanisms are not always clear. Here we show that size-mismatch between host and dopant cations tunes photoluminescence shifts systematically in M(1.95)Eu(0.05)Si(5-x)Al(x)N(8-x)O(x) lattices, leading to a red shift when the M = Ba and Sr host cations are larger than the Eu(2+) dopant, but a blue shift when the M = Ca host is smaller. Size-mismatch tuning of thermal quenching is also observed. A local anion clustering mechanism in which Eu(2+) gains excess nitride coordination in the M = Ba and Sr structures, but excess oxide in the Ca analogues, is proposed for these mismatch effects. This mechanism is predicted to be general to oxynitride materials and will be useful in tuning optical and other properties that are sensitive to local coordination environments.  相似文献   

13.
Trivalent rare-earth (RE) ions (Eu(3+), Tb(3+) and Sm(3+)) activated multicolor emitting SrY(2)O(4) phosphors were synthesized by a sol-gel process. The structural and morphological studies were performed by the measurements of X-ray diffraction profiles and scanning electron microscope (SEM) images. The pure phase of SrY(2)O(4) appeared after annealing at 1300 °C and the doping of RE ions did not show any effect on the structural properties. From the SEM images, the closely packed particles were observed due to the roughness of each particle tip. The photoluminescence (PL) analysis of individual RE ions activated SrY(2)O(4) phosphors exhibits excellent emission properties in their respective regions. The Eu(3+) co-activated SrY(2)O(4):Tb(3+) phosphor creates different emissions by controlling the energy transfer from Tb(3+) to Eu(3+) ions. Based on the excitation wavelengths, multiple (green, orange and white) emissions were obtained by Sm(3+) ions co-activated with SrY(2)O(4):Tb(3+) phosphors. The decay measurements were carried out for analyzing the energy transfer efficiency and the possible ways of energy transfer from donor to acceptor. The cathodoluminescence properties of these phosphors show similar behavior as PL properties except the energy transfer process. The obtained results indicated that the energy transfer process was quite opposite to the PL properties. The calculated CIE chromaticity coordinates of RE ions activated SrY(2)O(4) phosphors confirmed the red, green, orange and white emissions.  相似文献   

14.
Undoped Bi(2)O(3) and single and double doped Bi(2)O(3)?:?M (where M = Tb(3+) and Eu(3+)) nanophosphors were synthesized through a simple sonochemical process and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), EDS, diffuse reflectance (DRS) and photoluminescence (PL) spectrophotometry. The TEM micrographs show that resultant nanoparticles have a rod-like shape. Energy transfer was observed from host to the dopant ions. Characteristic green emissions from Tb(3+) ions and red emissions from Eu(3+) ions were observed. Interestingly, the Commission International de l'Eclairage (CIE) coordinates of the double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods lie in the white light region of the chromaticity diagram and it has a quantum efficiency of 51%. The undoped Bi(2)O(3) showed a band gap of 3.98 eV which is red shifted to 3.81eV in the case of double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods. The photocatalytic activities of undoped nano Bi(2)O(3) and double doped nano Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) were evaluated for the degradation of Rhodamine B under UV irradiation of 310 nm. The results showed that Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) had better photocatalytic activity compared to undoped nano Bi(2)O(3). The evolution of CO(2) was realized and these results indicated the continuous mineralization of rhodamine B during the photocatalytic process. Thus double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods can be termed as a bifunctional material exhibiting both photocatalytic properties and white light emission.  相似文献   

15.
We developed a highly effective and self-sustaining route for synthesizing Sr(2)Si(5)N(8):Eu(2+) red-emitting phosphor particles for use in light emitting diodes (LEDs). The phosphors thus synthesized showed excellent emission characteristics under a blue excitation wavelength of 450 nm, had a uniform particle size distribution, and showed high performance in LED packages.  相似文献   

16.
The orange-red emitting phosphors based on M(2)Si(5)N(8):Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance applications because of their excellent thermal and chemical stabilities. A series of nitridosilicate phosphor compounds, M(2-x)Si(5)N(8):Eu(x) (M = Sr, Ba), were prepared by solid-state reaction. The thermal degradation in air was only observed in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10, but it did not appear in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.02 and Ba analogue with x = 0.10. This is an unprecedented investigation to study this phenomenon in the stable nitrides. The crystal structural variation upon heating treatment of these compounds was carried out using the in situ XRD measurements. The valence of Eu ions in these compounds was determined by electron spectroscopy for chemical analysis (ESCA) and X-ray absorption near-edge structure (XANES) spectroscopy. The morphology of these materials was examined by transmission electron microscopy (TEM). Combining all results, it is concluded that the origin of the thermal degradation in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10 is due to the formation of an amorphous layer on the surface of the nitride phosphor grain during oxidative heating treatment, which results in the oxidation of Eu ions from divalent to trivalent. This study provides a new perspective for the impact of the degradation problem as a consequence of heating processes in luminescent materials.  相似文献   

17.
Endo T  Doi Y  Wakeshima M  Hinatsu Y 《Inorganic chemistry》2010,49(23):10809-10814
Synthesis, crystal structures, and magnetic properties of melilite-type oxides A(2)MSi(2)O(7) (A = Sr, Eu; M = Mg, Mn) were investigated. These compounds crystallize in the melilite structure with space group P4?2(1)m. The (151)Eu Mo?ssbauer measurements show that the Eu ions are in the divalent state. The Eu(2)MgSi(2)O(7) is paramagnetic down to 1.8 K. Long-range antiferromagnetic ordering is observed at 3.4 K for Sr(2)MnSi(2)O(7). On the other hand, the Eu(2)MnSi(2)O(7) shows a ferrimagnetic transition at 10.7 K. From the magnetization and specific heat measurements, it is found that the Eu(2+) (14 μ(B)) and Mn(2+) (5 μ(B)) sublattices order antiferromagnetically. This result indicates that an interaction between f-d electrons (Eu-Mn) predominantly operate in this compound.  相似文献   

18.
Sr(2)CeO(4) and Sr(2)CeO(4):Eu(3+),Dy(3+) phosphor particles and thin films were prepared by using an emulsion liquid membrane (ELM, water-in-oil-in-water (W/O/W) emulsion) system, containing VA-10 (2-methyl-2-ethylheptanoic acid) as extractant (cation carrier). A two-step extraction enabled efficient extraction for Sr(3+) and rare earth ions, and the resulting precursor metal oxalate particles produced in the internal water phase of the ELM system were about 60 nm in diameter. Calcination of the oxalate particles in air gave submicrometer-sized Sr(2)CeO(4) and Sr(2)CeO(4):Eu(3+),Dy(3+) particles, which showed blue and white luminescence, respectively, by UV excitation. Blue and white luminescence phosphor thin films were also prepared by soaking alumina substrates into the W/O emulsion containing precursor oxalate particles, followed by calcination in air.  相似文献   

19.
A series of Bi3+-doped YAG:Ce3+, Mn2+ ceramics was synthesized successfully by gel-casting method and structurally characterized by XRD and SEM. The doping effect and related mechanism of Bi3+ upon the luminescent property were studied. It can be assigned to the energy transfer of multipolar interaction from Bi3+ to Ce3+, leading to the improvement of emission intensity about 58% for 0.0001 Bi3+ and 0.05 Mn2+ doping. In addition, the emission is significantly red-shifted with the peak at 590 nm for the Y2.9939 Ce0.006 Bi0.0001 Al4.96 Mn0.02 Si0.02 O12 ceramic specimen with in-line transmittance 81.6% at 1100 nm. The LED module assembled from Y2.9939 Ce0.006 Bi0.0001 Al4.96 Mn0.02 Si0.02 O12 ceramic owns correlated color temperature(CCT) of 3960 K and luminous efficiency(LE) of 92 lm/W, implying that doping Bi3+ shows a good sensitization effect in the YAG:Ce3+, Mn2+ ceramic system and further serving as an attracting phosphor candidates for warm WLEDs applications.  相似文献   

20.
Eu(III)-doped Y(2)O(3) nanocrystals are prepared by microwave synthetic methods as spherical 6.4 ± 1.5 nm nanocrystals with a cubic crystal structure. The surface of the nanocrystal is passivated by acetylacetonate (acac) and HDA on the Y exposed facet of the nanocrystal. The presence of acac on the nanocrystal surface gives rise to a strong S(0) → S(1) (π → π*, acac) and acac → Ln(3+) ligand to metal charge transfer (LMCT) transitions at 270 and 370 nm, respectively, in the Eu:Y(2)O(3) nanocrystal. Excitation into the S(0) → S(1) (π → π*) or acac → Ln(3+) LMCT transition leads to the production of white light emission arising from efficient intramolecular energy transfer to the Y(2)O(3) oxygen vacancies and the Eu(III) Judd-Ofelt f-f transitions. The acac passivant is thermally stable below 400 °C, and its presence is evidenced by UV-vis absorption, FT-IR, and NMR measurements. The presence of the low-lying acac levels allows UV LED pumping of the solid phosphor, leading to high quantum efficiency (~19%) when pumped at 370 nm, high-quality white light color rendering (CIE coordinates 0.33 and 0.35), a high scotopic-to-photopic ratio (S/P = 2.21), and thermal stability. In a LED lighting package luminosities of 100 lm W(-1) were obtained, which are competitive with current commercial lighting technology. The use of the passivant to funnel energy to the lanthanide emitter via a molecular antenna effect represents a new paradigm for designing phosphors for LED-pumped white light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号