首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex films of crosslinked poly(methylsiloxane-co-ethylene oxide) and lithium perchlorate were prepared. These solid state polymeric electrolytes show a markedly higher ionic conductivity, and excellent flexibility. The ionic conductivity of the network films closed to 10~(-5) Scm~(-1) at room temperature. The effects of Li~+ content, species and contents of crosslinking agents, molecular weight of poly(ethylene oxide) and temperature on the ionic conductivity of the network films were also investigated.  相似文献   

2.
Polymer electrolytes based on poly (methylsiloxane-g-ethylene oxide) and LiClO_4 have been prepared. The network films crosslinked by a crosslinking agent are found to exhibit a considerably high ionic conductivity of about 10~(-4) Scm~(-1) at room temperature and have good flexibility.  相似文献   

3.
使用共混后浇铸成膜的方法,制备了聚苯并咪唑-锂盐-聚乙二醇单甲醚组成的锂离子电池共混全固态聚合物电解质。通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、差示扫描量热(DSC)、拉伸与交流阻抗测试表征了共混全固态电解质的结构与性能。研究了不同锂盐以及各组分含量对共混全固态电解质的力学性能与电导率的影响。结果表明:聚苯并咪唑与聚乙二醇单甲醚之间存在氢键;共混全固态电解质中聚乙二醇单甲醚处于无定形态;锂盐的加入使聚乙二醇单甲醚的玻璃化转变温度下降;聚乙二醇单甲醚含量越高,共混膜强度越低,电导率越高,并且使用三氟甲磺酸锂作为锂盐时其电导率最高,室温下可以达到3.58×10~(-5) S/cm,高温下可以达到3.3×10~(-3) S/cm,高温下满足对锂离子电池的使用需求。  相似文献   

4.
Networked polymers that had poly(ethylene glycol) (PEG) chains and lithium sulfonylimide salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonyl‐trifluoromethanesulfonylimide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained flexible self‐standing networked polymer films showed high thermal and mechanical stability with relatively high ionic conductivity. The room temperature ionic conductivity under a dry condition was in the range of 10?5 ~ 10?4 S m?1, which is one order of magnitude higher than the corresponding networked polymers having lithium sulfonate salt structures (10?6 ~ 10?5 S m?1). The film sample became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The sample swollen in PC showed higher ionic conductivity (7.2 × 10?3 S m?1 at room temperature), and the sample swollen in 1.0 M LiTFSI/PC showed much higher ionic conductivity (8.2 × 10?1 S m?1 at room temperature). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Poly(ethylene glycol)‐based networked polymers that had lithium sulfonate salt structures on the network were prepared by heating a mixture of poly(ethylene glycol) diglycidyl ether (PEGGE), poly(ethylene glycol) bis(3‐aminopropyl) terminated (PEGBA), and an ionic epoxy monomer, lithium 3‐glycidyloxypropanesulfonate (LiGPS). Flexible self‐standing networked polymer films showed high thermal stability, low crystallinity, low glass transition temperature, and good mechanical strength. The materials were ion conductive at room temperature even under a dry condition, although the ionic conductivity was rather low (10?6 to 10?5 S/m). The ionic conductivity increased with the increase in temperature to above 1 × 10?4 S/m at 90 °C. The film samples became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The samples swollen in PC showed higher ionic conductivity (ca.1 × 10?3 S/m at room temperature), and the samples swollen in LiTFSI/PC showed much higher ionic conductivity (nearly 1 S/m at room temperature). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3113–3118, 2010  相似文献   

6.
Abstract

Polymer electrolytes based on blends of poly(ethylene oxide) (PEO) with various stereoisomers of poly(methyl methacrylate) (PMMA) were studied by means of impedance spectroscopy and DSC. It was found that isotactic poly(methyl methacrylate) (1PMMA)-based electrolytes exhibit ambient temperature conductivities at least one order of magnitude higher than the electrolytes containing other stereoisomers of PMMA. The highest value of room temperature conductivity equal to 9 × 10?5 S/cm was measured for a sample containing 30 wt% IPMMA. The effect observed results from the presence of a flexible amorphous phase in PEO-IPMMA blends which is favorable for fast ionic transport. A small increase of ionic conductivity with decreasing molecular weight of the added atactic poly(methyl methacrylate) was also observed.  相似文献   

7.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
交联PEO嵌段共聚物固体电解质的制备及导电性研究   总被引:3,自引:0,他引:3  
利用低分子聚乙二醇 (PEG ,Mn=6 0 0 )与CH2 Cl2 在碱性条件下通过Williamson反应生成氧亚甲基连接的聚氧化乙烯嵌段聚合物 .1 H NMR表明 ,其分子平均组成以 [CH2 O(CH2 CH2 O) 1 3]为重复单元结构 .适量的2 ,4 二异氰酸甲苯酯 (TDI)与聚合物 锂盐电解质形成交联网络结构 ,具有较好的成膜性能、力学性能与热稳定性能 .在测试温度范围内 ,电导率与温度的关系很好的符合Arrhenius关系式 (σ =Ae-Ea RT) .锂盐浓度不同 ,Arrhenius曲线有一个或两个活化能 (Ea)值出现 .该聚合物掺混LiN(CF3SO2 ) 2 形成的固体电解质具有良好的导电性 ,在EO Li =2 5∶1(摩尔比 )时 ,室温下σ =1 12× 10 - 5S cm ,分解电压可达 5 0V .  相似文献   

9.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Solid polymer electrolytes (SPEs) with high ionic conductivity and acceptable mechanical properties are of particular interest for increasing the performance of batteries. In the present work, SPEs based on poly(ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) with various lithium salts were prepared by solvent casting technique. The amorphous nature of the polymer-salt complex was studied by X-ray diffraction analysis. The complexation of the prepared electrolytes was confirmed by Fourier transform infrared analysis. Ionic conductivity as a function of frequency was studied at various temperatures in the range of 303–353 K. The maximum ionic conductivity value was found to be 1.08 × 10?5 S/cm for the film containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) at room temperature and the temperature dependent ionic conductivity values seem to obey Vogel-Tamman-Fulcher relation. Thermogravimetry was used to ascertain the thermal stability of the electrolytes. Photoluminescence measurements demonstrated that the sample having maximum ionic conductivity shows the minimum luminescence intensity. Ultra violet-visible analysis reveals that the values of the band gap energies were changed with the addition of various lithium salts. Porosity of the sample containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) was studied by Atomic force microscope.  相似文献   

11.
Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a mesogen-jacketed liquid crystalline polymer(MJLCP)with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide)(PEO)side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations.The block copolymers can self-assemble into ordered morphologies at 200℃.After doping of lithium salts and ionic liquid(IL),ABA-x self-assembles into cylindrical structures.The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points,which significantly improve the mechanical performance of the polymer electrolytes.The ionic conductivity of ABA-x/lithium salt/IL is as high as 10-3 S·cm-1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains.The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher(VTF)equation.In addition,the electrolyte films are flame retardant owing to the addition of IL.The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.  相似文献   

12.
一种新型聚合物固体电解质的导电性的研究   总被引:3,自引:0,他引:3  
赵莹歆  刘昌炎 《高分子学报》1999,362(3):373-376
自从1975年Wright等[1]首次发现了PEO 碱金属盐络合物的离子导电性后,人们对不同类型的聚合物固体电解质进行了深入的研究,其中最成功的是玻璃化温度Tg较低、盐浓度适中的“salt in polymer”固体电解质[2,3],但在没有其它小分...  相似文献   

13.
The polysiloxane containing propylene carbonate side group and several lithium poly-meric salts were synthesized. The structure were confirmed by IR, NMR and XPS. Theblending systems of polysiloxane containing propylene carbonate group with different lithiumpolymeric salts were studied by ion conductivity XPS and DSC. Different lithium poly-meric salts in the blending system lead to conductivity arranged in the following sequence:poly(lithium ethylenebenzene sulfonate methylsiloxane)>poly(lithium propionate methyl-siloxane)>poly(lithium propylsulfonate methylsiloxane)>poly(lithium styrenesulfonate).In the blending system the best single ion conductivity was close to 10~(-5) Scm~(-1) at roomtemperature. XPS showed that at low lithium salt concentration the conductivity increasedwith the increasing content of lithium salt, in consequence of the increase of free ion andsolvent separated ion pair. At high lithium salt concentration the free ion was absent andthe solvent-separated ion pair functioned as carrier.  相似文献   

14.
红外光谱研究PEO基离子液体聚合物电解质   总被引:1,自引:0,他引:1  
以聚氧化乙烯(PEO)为聚合物基体, 双三氟甲基磺酸亚酰胺锂(LiTFSI)为锂盐, 加入不同量的离子液体(BMIMPF6)为增塑剂, 制备离子液体聚合物电解质. 运用发射FTIR光谱技术实时监测所制备聚合物电解质的结构随温度的变化. 结合FTIR透射光谱\, SEM和XRD的研究结果分析了离子液体对离子电导率的影响, 并初步提出离子导电增强机制.  相似文献   

15.
聚合物单阳离子导体的制备—羧酸型梳状单离子导体   总被引:1,自引:1,他引:1  
本文报道一种制备聚合物单阳离子导体的新方法。马来酸酐-醋酸乙烯酯及马来酸酐-苯乙烯共聚物以聚乙二醇单甲醚醇解,使酸酐环打开而得到带有聚乙二醇侧链的羧酸型梳状聚合物,其锂盐在加入适当增塑剂成膜后,可作为聚合物单阳离子导体,其结构以非晶态为主,具有较低的玻璃化转变温度及较好的热稳定性,增塑后的室温电导率最高可达10^-6S/cm。此外还研究了聚合物结构、阳离子半径、增塑剂、温度及外加额率等因素对电导率  相似文献   

16.
聚苯醚磺酸锂与酯类增塑剂共混物的导电性汪传清,黄玉惠,赵树录,丛广民(中国科学院广州化学研究所广州510650)关键词 聚苯醚磺酸锂,酯类增塑剂,共混,导电性能高分子固体电解质[1]可作为高能电池、电致变色等材料。聚环氧乙烷/碱金属盐复合物与无机盐构...  相似文献   

17.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

18.
AC impedance spectroscopy was used to investigate the ionic conductivity of solution cast poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends doped with lithium perchlorate. At low PEO contents (below overlap weight fraction w*), ionic conductivities are almost low. This could be due to nearly distant PEO chains in blend, which means ion transportation cannot be performed adequately. However, at weight fractions well above w*, a significant increase in ionic conductivity was observed. This enhanced ionic conductivity mimics the PEO segmental relaxation in rigid PMMA matrix, which can be attributed to the accelerated motions of confined PEO chains in PMMA matrix. At PEO content higher than 20 wt % the conductivity measured at room temperature drops due to crystallization of PEO. However by increasing temperature to temperatures well above the melting point of PEO, a sudden increase of conductivity was observed which was attributed to phase transition from crystalline to amorphous state. The results indicate that some PEO/PMMA blends with well enough PEO content, which are structurally solid, can be considered as an interesting candidate for usage as solid‐state electrolytes in Lithium batteries. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2065–2071, 2010  相似文献   

19.
Polymer/ionic liquid composites were investigated as solvent-free electrolytes for lithium batteries. Ternary electrolytes based upon poly(ethylene oxide), an ionic liquid and a conducting salt were UV crosslinked with benzophenone as the photoinitiator. Crosslinking leads to an increase in mechanical stability of the PEO composites. This straight-forward process provides a way to increase the content of ionic liquid and thus to raise ionic conductivity without loss of mechanical stability. Impedance measurements showed that the ionic conductivity of the composites is not affected by the UV curing process. Moreover, the UV curing process causes a decrease in the degree of crystallinity in the PEO composites which contributes to an increase in ionic conductivity. The present work is related to safety issues of lithium batteries.  相似文献   

20.
Lyu  Yu-Feng  Zhang  Zhi-Jie  Liu  Chang  Geng  Zhi  Gao  Long-Cheng  Chen  Quan 《高分子科学》2018,36(1):78-84
The ionic conductivity and the mechanical strength are two key factors for the performance ofpoly(ethylene oxide) (PEO) based polyelectrolytes.However,crystallized PEO suppresses ion conductivity at low temperature and melted PEO has low mechanical strength at high temperature.Here,random binary brush copolymer composed of PEO-and polystyrene (PS)-based side chains is synthesized.PEO crystallinity is suppressed by the introduction of PS brushes.Doping with lithium trifluoromethanesulfonate (LiTf) induces microphase separation.Due to a random arrangement of the brushes,the microphase segregation is incomplete even at high salt loading,which provides both high ionic conductivity and high mechanical strength at room temperature.These results provide opportunities for the design of polymeric electrolytes to be used at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号