首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
为改善聚苯醚磺酸锂(SPPOLi)的导电性能,将聚酷酸乙烯酯(PVAc)与之共混,X-射线衍射分析表明,PVAc可降低SPPOLi凝聚结构的有序程度;发现共混后电导率有了较大提高,共混物的电导对温度的依赖关系不符合阿仑尼马斯方程;同时,共混物仍保持了单离子传导性.  相似文献   

2.
本文为提高聚苯醚磺酸锂(SPPOLi)的导电性能, 将聚乙二醇(PEG)与之共混,DSC分析发现SPPOLi的玻璃化转变温度随PEG的加入有所下降, 并且对于高磺化度的样品下降更为明显; X射线衍射表明, PEG可降低SPPOLi凝聚结构的有序程度;发现通过共混, 电导率有了较大提高, 并且仍保持了单离子的传导性。  相似文献   

3.
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性   总被引:1,自引:0,他引:1  
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性郑云贵,万国祥(中国科学院成都有机化学研究所成都610041)关键词低聚醚磺酸锂,单离子导体,阳离子迁移数聚合物阳离子导体一般采用单体盐与能促进离子迁移的单体通过共聚或将其均聚物共混的方式制备’‘-‘’.由于...  相似文献   

4.
聚苯醚磺酸锂与聚乙二醇共混体系的离子导电性   总被引:1,自引:1,他引:1  
本文研究影响聚乙二醇(PEG)增塑聚苯醚磺酸锂(SPPOLi)电导率的各种因素,如摩尔比,及PEG分子量等。SPPOLi/PEG具单离子导体的特征,试样最高室温电导可达10^-5S/cm。  相似文献   

5.
偶联剂对聚氯乙烯-聚丙撑碳酸酯共混体系力学性能的影响王胜杰,黄玉惠,丛广民(中国科学院广州化学研究所广州510650)关键词聚氯乙烯,聚丙撑碳酸酯,偶联剂,丁腈胶,过氧化苯甲酰,共混聚氯乙烯(PVC)是用量巨大的通用塑料,其软性制品需用大量的增塑剂,...  相似文献   

6.
磺化聚苯醚的制备与表征   总被引:6,自引:0,他引:6  
磺化聚苯醚的制备与表征汪传清,黄玉惠,丛广民(中国科学院广州化学研究所广州510650)关键词聚苯醚,磺化,磺化度,磺化聚苯醚聚苯醚是一种优良的工程塑料,对它进行修饰改性以获得各种功能材料的研究近十多年来十分活跃’‘,’,‘’.磺化聚苯醚(SPPO)...  相似文献   

7.
研究了磺化聚苯乙烯离聚体/聚(苯乙烯-4-乙烯吡啶)共混体系,磺化聚苯醚离聚体/聚(苯乙烯-4-乙烯吡啶)共混体系的磺化聚苯醚离聚体/胺化聚苯醚共混体系在氯仿/甲醇混合溶剂中的粘度行为,结果表明,和它们分别对应的不含离子基的共混物相比,这三个共混体系都表现出较高的比较粘度,这是由于体系中的酸基及其盐和含氮碱基的引入,在共混组分间产生了强烈的离子相互作用,从而导致分子间的缔合,使比浓粘度提高,并讨论  相似文献   

8.
离聚物共混体系在溶液中分子间缔合的粘度研究   总被引:1,自引:0,他引:1  
研究了磺化聚苯乙烯离聚体/聚(苯乙烯 4 乙烯吡啶)共混体系、磺化聚苯醚离聚体/聚(苯乙烯 4 乙烯吡啶)共混体系和磺化聚苯醚离聚体/胺化聚苯醚共混体系在氯仿/甲醇混合溶剂中的粘度行为,结果表明,和它们分别对应的不含离子基的共混物相比,这三个共混体系都表现出较高的比浓粘度.这是由于体系中的酸基及其盐和含氮碱基的引入,在共混组分间产生了强烈的离子相互作用,从而导致分子间的缔合,使比浓粘度提高.并讨论了溶剂体系、功能基种类及共混组分的主链结构等因素对这种分子间缔合作用的影响.  相似文献   

9.
聚苯醚/聚苯乙烯共混物溶液浇铸膜的热演化行为   总被引:1,自引:0,他引:1  
聚苯醚与聚苯乙烯共混物是目前相容性最好的共混体系之一。几十年来人们对该共混体系相容的原因进行了广泛的研究^[1-4]。聚苯醚是半结晶聚合物,在溶剂或溶剂蒸气存在的条件下容易形成结晶,溶剂的性质及结晶的条件都会影响聚苯醚的结晶结构及其形态^[5-8]。用溶液共昆、凝聚成膜的方法制备共混物时,一种结晶性高分子怎样与另一种高分子演化成相容的非晶共混体系,是一个比较有意义的研究课题。本文运用DSC方法,研究了聚苯醚与聚苯乙烯两者溶液共混凝聚成膜后,在各种热历史条件下结晶结构的消亡和演化成非晶相容体系的行为。  相似文献   

10.
本工作合成了聚甲基丙烯酸齐聚氧化乙烯酯和聚甲基丙烯酸己磺酸锂两系列聚合物,研究共聚物结构对共混物的相容性和锂离子导电性的影响.结果表明,共混物的相容性是决定离子电导率的主要因素;共混物内锂离子传导发生在非晶区,聚合物的链段运动是离子传导的主要推动力.  相似文献   

11.
We found new plasticizers with high molecular weight and low mobility for poly(lactic acid) (PLA). The new plasticizers are polyester-diols (PED) with nominal molecular weight 2000. Temperature dependence of oscillatory tensile moduli of PLA/PED blends in solid states was measured and miscible pairs of the blends were found. The miscible pairs are PLA/poly(ethylene adipate) and PLA/poly(diethylene adipate). Observation by scanning electron microscope and results of differential scanning calorimetry also indicate that these blends are miscible with PLA at weight ratio of PED less than or equal to 20%. In these blends, glass transition temperature is significantly lower than that of PLA. On the other hand, poly(butylene adipate) and poly(hexamethylene adipate) are partially miscible with PLA at weight ratio of PED 20%. The difference of the miscibility is discussed in terms of solubility parameter, which is calculated using the method by Small and configurational entropy.  相似文献   

12.
通过溶解―铸膜法制备聚乙烯醇(PVA)-KOH-H2O碱性聚合物电解质膜。向聚合物中添加增塑剂丙三醇(GROL)和碳酸丙烯酯(PC)来提高离子电导率。X射线晶体衍射分析(XRD)结果表明,添加增塑剂未改变聚合物的物相结构,薄膜仍主要为不定形态。差示扫描热分析(DSC)结果显示,添加增塑剂后聚合物电解质膜的玻璃化转变温度降低,促进了电解质膜向不定形态转变。电解质膜室温离子电导率随增塑剂添加而增大,增塑剂超过一定量后离子电导率开始下降。PC对提高离子电导率的作用优于GROL。循环伏安测试结果显示,电解质膜的电化学稳定性窗口随增塑剂的添加而有所变窄,但仍显示了较好的电化学稳定性。  相似文献   

13.
This paper is part of a comprehensive study on using selective localization of carbon black (CB) at the interface of immiscible polymer blends in order to reduce the percolation threshold concentration and enhance the conductivity of the blends. CB was successfully localized at the interface of polypropylene/polystyrene (PP/PS) blend by introducing styrene-butadiene-styrene (SBS) tri-block copolymer to the blend. In CB-PP/PS/SBS blends, CB has higher affinity for the polybutadiene (PBD) section of the SBS copolymer, whereas in CB-PP/PS blends, CB prefers the PS phase. PP/PS interface is one of the preferred locations for the SBS copolymer in the (PP/PS) blend; at which the PBD section of the SBS copolymer forms a few nanometers thick layer able to accommodate the CB nano-particles. The influence of SBS addition on the morphology and electrical properties of various PP/PS blends filled with 1 vol% CB were studied. SBS influence on the conductivity of PP/PS blends was found to be a function of the PP/PS volume ratio and SBS loading. The most dramatic increase in conductivity was found in the (60/40) and (70/30) PP/PS blends upon the addition of 5 vol% SBS. 5 vol% SBS was found to be the optimum loading for most blends. Using 10 vol% of SBS was reported to deteriorate electrical conductivity of the conductive co-continuous PP/PS blends. For all blends studied, SBS addition was found to compatibilize the blends. Finer morphologies were obtained by increasing SBS loading.  相似文献   

14.
Xiong  ZhuoYue  Sun  Yao  Wang  Li  Guo  ZhaoXia  Yu  Jian 《中国科学:化学(英文版)》2012,55(5):807-812
Carbon nanotube (CNT)-filled polycarbonate (PC)/poly(butylene terephthalate) (PBT) and polycarbonate (PC)/poly(ethylene terephthalate) (PET) blends containing 1 wt% CNTs over a wide range of blend compositions were prepared by melt mixing in a torque rheometer to investigate the structure-electrical conductivity relationship. Field emission scanning electron microscopy was used to observe the blend morphology and the distribution of CNTs. The latter was compared with the thermodynamic predictions through the calculation of wetting coefficients. It was found that CNTs are selectively localized in the polyester phase and conductive blends can be obtained over the whole composition range (20 wt%, 50 wt% and 80 wt% PBT) for CNT-filled PC/PBT blends, while conductive CNT-filled PC/PET blends can only be obtained when PET is the continuous phase (50 wt%, 80 wt% PET). The dramatic difference in the electrical conductivity between the two types of CNT-filled PC/polyester blends at a low polyester content (20 wt%) was explained by the size difference of the dispersed phases on the basis of the transmission electron microscope micrographs.  相似文献   

15.
Abstract

The electrical conductivity behavior of polyaniline–poly(ethylene‐co‐vinyl acetate) (PANI–EVA) blends was variable and dynamic during their storage. It was shown that the apparent concentration of the intrinsically conductive polymer at which a conductivity jump of the blends occurs (Φ c ) is not a constant value over time. The electrical conductivity of the films of low PANI content (below 2.5 wt.%) increased by several (ca. 5) orders of magnitude. It was found that the PANI phase undergoes a flocculation process subsequently resulting in the formation of conductive pathways and a continuous network. Besides, the shape of percolation curves was found to change during storage of the films. Decreased conductivity deviations were registered for blends of low PANI content (<2.5 wt.%), indicating that an improvement (or decreasing number of defects) of the conductive pathways took place within the bulk of the insulating EVA matrix. These results and observed phenomena are discussed by means of the interfacial model for electrically conductive polymer blends. They supported the dispersion/flocculation phase transition within similar composite materials. The phase separation and conductivity jump are attributed to the interfacial interactions between the polymeric constituents. It was shown that the microstructure of the blends consists of highly ordered PANI paths embedded in the insulating EVA matrix. Long fibrils of PANI and interconnected fractal‐like networks were observed. It was found that the sizes of the PANI domains also varied during storage of the films. Due to the spontaneous flocculation of the primary PANI particles, conductive pathways are formed at extremely low percolation threshold (Φ c , loading level ca. 5 × 10?3 wt. fraction). Thus, an important property of the conductive constituent, namely its solid‐state rearrangement, was proved. This PANI self‐organization is also interpreted according to the interfacial model of polymer composites. On the other hand, the competition between self‐organization of the complex of PANI with dodecylbenzenesulfonic acid and crystallization of EVA matrix has resulted in structural changes and formation of continuous conductive networks within the blends, responsible for their significantly increased conductivity.  相似文献   

16.
Polyamides are semi‐crystalline polymers useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and workability of the polyamides. Therefore, plasticizers are added to ease compounding and processing procedures and produce the desired product properties. The goal of the present work was to study experimentally a series of four esters of 4‐hydroxybenzoate with linear side chain as plasticizers for the random copolymer nylon 66/6 and to compare the experimental results to computational results that were obtained in a previous work. The plasticizers used were the methyl, ethyl, propyl, and butyl esters of 4‐hydroxybenzoate (M4HB, E4HB, P4HB, and B4HB, respectively). Four properties of the plasticizer‐polymer blends were examined: area under the loss modulus curve; impact energy; the decrease in Tg, which is related to the plasticization efficiency, and static modulus that serves as an indication to the mechanical properties or the polymer. It was found that P4HB and B4HB offer the optimal combination of plasticization efficiency and mechanical properties and that M4HB is inferior to the other three plasticizers, as was predicted computationally. This study verifies that computational design of plasticizers for nylon is valid and can serve as an important tool to develop new plasticizers specifically and new additives to polymers generally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Polypropylene (PP) and acrylonitrile‐butadiene‐styrene (ABS) blends with multiwall carbon nanotubes (MWNT) were prepared by melt mixing. PP/ABS blends without MWNT revealed coarse co continuous structures on varying the ABS content from 40 to 70 wt %. Bulk electrical conductivity of the blends showed lower percolation threshold (0.4–0.5 wt %) in the 45/55 co continuous blends whereas the percolation threshold was between 2 and 3 wt % in matrix‐particle dispersed morphology of 80/20 blends. Interestingly, droplet size was observed to decrease with addition of MWNT above percolation threshold in 80/20 blends. Further, the bulk electrical conductivity was found to be dependent on the melt flow index of PP. The non‐polar or weakly polar nature of blends constituents resulted in the temperature independent dielectric constant, dielectric loss, and DC electrical conductivity. Rheological analysis revealed the formation of 3D network‐like structure in 80/20 PP/ABS blends at 3 wt % MWNT. An attempt was made to understand the relationship between rheology, morphology, and electrical conductivity of these blends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2286–2295, 2008  相似文献   

18.
Abstract

Polymer electrolytes based on blends of poly(ethylene oxide) (PEO) with various stereoisomers of poly(methyl methacrylate) (PMMA) were studied by means of impedance spectroscopy and DSC. It was found that isotactic poly(methyl methacrylate) (1PMMA)-based electrolytes exhibit ambient temperature conductivities at least one order of magnitude higher than the electrolytes containing other stereoisomers of PMMA. The highest value of room temperature conductivity equal to 9 × 10?5 S/cm was measured for a sample containing 30 wt% IPMMA. The effect observed results from the presence of a flexible amorphous phase in PEO-IPMMA blends which is favorable for fast ionic transport. A small increase of ionic conductivity with decreasing molecular weight of the added atactic poly(methyl methacrylate) was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号