首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.  相似文献   

2.
The electrical characteristics of Au/n-Si (1 0 0) Schottky rectifier have been studied in a wide irradiation fluence range using conventional current-voltage (I-V) and capacitance-voltage (C-V) measurements. The I-V characteristics showed an abnormal increase in forward current at low voltage. The device shows a bend in forward I-V and reverses bias C-V characteristics due to extra current, suggesting that there are two independent contributions to thermionic current, corresponding to two levels of the Schottky barrier. It is shown that the excess current at low voltage can be explained by taking into account the role of heavy ion irradiation induced defects at the metal semiconductor interface.  相似文献   

3.
Mixed metal matrix cathodes have inherent non-uniformity and patchiness of emission due to the presence of two-alloy phase structure on the surface. I-V characteristics of cathode studied in a close spaced diode configuration is one of the easy and cost effective methods to estimate the variation of work function on the cathode surface. Tungsten iridium mixed metal matrix dispenser cathodes of Ø1.4 mm (80 wt.% W-20 wt.% Ir) have been fabricated in the laboratory and their I-V characteristics have been investigated in diode configuration. In this paper the model suggested by Tonnerre et al. has been used to find out the work function distribution of W-Ir cathodes from I-V characteristics. An attempt has been made to correlate the microstructure with the work function values.  相似文献   

4.
Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm2, which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 h at an initial luminance of 100 cd/m2, which is 10 times better than the LiF/Al cathode.  相似文献   

5.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

6.
Thermionic emission from vertically grown carbon nanotubes (CNTs) by water-assisted chemical vapor deposition (WA-CVD) is investigated. I-V characteristics of WA-CNT samples exhibit strong Schottky effect leading to field proportionality factor β ∼ 104 cm−1in contrast to β ∼ 200 cm−1 for the bare tungsten substrate. Non-contact atomic force microscopy imaging of CNT samples show propensity of nanoasperities over a scale of micron size over which the tungsten surface is seen to be atomically smooth. The values of root mean-square roughness for CNTs and W were found to be 24.2 nm and 0.44 nm respectively. The Richardson-Dushman plots yield work function values of ΦCNT ? 4.5 and ΦW ? 4.3 eV. Current versus time data shows that CNT cathodes are fifteen times noisier than tungsten cathode presumably due to increased importance of individual atomic events on the sharp CNT tips of bristle like structures. Power spectral density of current exhibited 1/fξ behavior with ξ ? 1.5, and 2 for W and CNTs. The former suggests surface diffusion whereas the latter indicates adsorption/desorption of atomic/molecular species as a dominant mechanism of noise generation.  相似文献   

7.
Zinc oxide (ZnO) nanowires have been synthesized by using tubular furnace chemical vapor deposition technique. The morphology, chemical composition and crystal structure of as-synthesized ZnO nanowires were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Four-terminal current-voltage (I-V) measurements were employed to study the electrical conductance of ZnO nanowires under various testing gas environments for gas sensing purpose. The I-V curves at temperature ranging from 150 to 300 K were recorded in the testing chamber under vacuum. The Arrhenius plot shows perfect linear relationship between the logarithm of the current I and inverse temperature 1/T. The donor level of the semiconducting nanowires is about 326 meV. The I-V behaviors were found to be reversible and repeatable with testing gases. The electrical conductivity was enhanced by a factor of four with ambient CO gas compared to that in vacuum and other testing gases. The optoelectronic properties of the ZnO nanowires were obtained by two-terminal I-V measurement method while the nanowires were illuminated by a ruby laser. The electrical conductivity was increased by 60% when the laser was present in comparison to that when the laser was off. Those significant changes suggest that nano-devices constructed by the ZnO nanowires could be used in gas sensing and optical switching applications.  相似文献   

8.
The current-voltage (I-V) characteristics of Al/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 280 to 400 K at 20 K intervals. A barrier height (BH) value of 0.817 eV for the Al/Rh101/p-Si/Al contact was obtained at the room temperature that is significantly larger than the value of 0.58 eV of the conventional Al/p-Si Schottky diode. While the barrier height Φb0 decreases the ideality factors (n) become larger with lowering temperature. The high values of n depending on the sample temperature may be ascribed to decrease of the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Therefore, at all temperatures, it has been seen that the I-V characteristics show three different regions, the ohmic behavior at low voltages, and the space charge limited current with an exponential distribution of traps at high voltages.  相似文献   

9.
The current-voltage (I-V) characteristics of Al/SiO2/p-Si metal-insulator-semiconductor (MIS) Schottky diodes were measured at room temperature. In addition the capacitance-voltage (C-V) and conductance-voltage (G-V) measurements are studied at frequency range of 10 kHz-1 MHz. The higher value of ideality factor of 3.25 was attributed to the presence of an interfacial insulator layer between metal and semiconductor and the high density of interface states localized at Si/SiO2 interface. The density of interface states (Nss) distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) at room temperature for the Schottky diode on the order of ≅4 × 1013 eV−1 cm−2. These high values of Nss were responsible for the non-ideal behaviour of I-V and C-V characteristics. Frequency dispersion in C-V and G-V can be interpreted only in terms of interface states. The Nss can follow the ac signal especially at low frequencies and yield an excess capacitance. Experimental results show that the I-V, C-V and G-V characteristics of SD are affected not only in Nss but also in series resistance (Rs), and the location of Nss and Rs has a significant on electrical characteristics of Schottky diodes.  相似文献   

10.
Nitrogen doped p-ZnO film, with urea as nitrogen source, is fabricated by pulsed laser deposition on well-cleaned p-type (1 0 0) Si substrates. The structural and electrical properties of the p-p heterojunction are investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. It shows a diode-like behavior with turn-on voltage of 0.5 V. The ideality factor η determined by applying positive potential in p-ZnO and negative potential along p-Si is found to be 6. Such a high value of η is attributed to lattice mismatch between ZnO and Si. and other factors responsible are thermoionic emission, minority carrier injection and recombination. C-V results indicate an abrupt interface and a band bending of 0.9 V in the silicon. Heterojunction band diagram for p-ZnO/p-Si is proposed.  相似文献   

11.
We used scanning tunneling microscopy (STM) to spatially map the local density of states of individual PNA molecules labeled with fluorescein isothiocyanate (FITC) on a Cu(1 1 1) surface. From the observed bias voltage dependences of the topographic height and the dI/dV map of FITC and individual PNA molecules, we confirmed that FITC and PNA have different electrical properties. We clearly differentiated the FITC and PNA molecules by mapping the density of states feature. This study shows that STM with the dI/dV map method is useful in FITC mapping.  相似文献   

12.
We report a study on the fabrication and characterization of ultraviolet photodetectors based on ZnO:Al films. Using sol-gel technique, highly c-axis oriented ZnO films with 5 mol% Al doping were deposited on Si(1 1 1) substrates. The photoconductive UV detectors based on ZnO:Al thin films, having a metal-semiconductor-metal (MSM) structure with interdigital (IDT) configuration, were fabricated by using Au as a contact metal. The characteristics of dark and photocurrent of the UV detector and the UV photoresponse of the detector were investigated. The linear current-voltage (I-V) characteristics under both forward and reverse bias exhibit ohmic metal-semiconductor contacts. Under illumination using monochromatic light with a wavelength of 350 nm, photo-generated current was measured at 58.05 μA at a bias of 6 V. The detector exhibits an evident wide-range spectral responsivity and shows a trend similar to that in transmittance and photoluminescence spectrum.  相似文献   

13.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

14.
Zn1−xAlxO ceramic samples with various x values (0.00≤x≤0.20) are sintered in air at temperatures of 850 °C for 10 h and then quenched to room temperature. Structural, surface morphology and I-V characteristics of the samples are investigated using X-ray diffractometer (XRD), scanning electron microscope (SEM) and dc electrical measurements. It is found that addition of Al up to 0.05 does not influence the well-known peaks related to wurtzite structure of ZnO ceramics, and other unknown peaks could be formed above 0.05 of Al. The cell parameters of Al-doped samples are a little shorter than the undoped ZnO, and also the shape and size of grains are clearly affected. Average crystalline diameters, deduced from XRD analysis, are between 39.90 and 47.18 nm, which are 25 times lower than those obtained from SEM micrographs. Although breakdown field, nonlinear coefficient and barrier height are generally decreased by Al addition, the electrical conductivity is improved. These results are discussed in terms of the interaction mechanism between atoms of Al and Zn in both under and over-doped regions.  相似文献   

15.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

16.
The electrical behaviour of lateral Al/n-GaN/Al structures has been studied by current-voltage measurements between a large pad with an area of 22 mm2 and small contacts with different areas in the range of 0.01-1 mm2. The results indicated that near room temperature the current was limited by the GaN layer exhibiting linear I-V characteristics for large contacts around 1 mm2, while it was contact limited for small contacts around 0.1 mm2 and below. This indicates that the same metal contact can behave as ohmic or rectifying depending on the contact area and so on the ratio of contact resistance to the series resistance of the structure.Near liquid nitrogen temperature, the current through the lateral Al/n-GaN/Al structures was limited by space charges. The Al/n-GaN contacts exhibited a very low Schottky barrier height below or around 0.2 eV. A new possible mechanism responsible for the temperature dependence of the ideality factor is proposed.  相似文献   

17.
Organic device with structure of indium tin oxide (ITO)/1,3,5-tris-(3-methylphenylphenylamino)triphenylamine (m-MTDATA)/2-tert-butyl-9,10-di-beta-naphthylanthracene (TBADN)/2,9-dimethyl-4,7-diphenyl-1,10-phenan-throline (BCP)/LiF/Al, was fabricated, which show high efficient white electroluminescence (EL) or photovoltaic (PV) properties when it was driven by direct current (DC) bias or illuminated by ultraviolet (UV) light. Under a DC bias, the device shows efficient white EL emission. A maximum luminous efficiency of 1.1 lm/W was obtained at 8 V, which corresponds the Commission International de L’Eclairage coordinates (CIE) of (x = 0.298, y = 0.365). When the bias was increased to 12 V, the device shows bright white emission with the maximum brightness of 4300 cd/m2, corresponding CIE coordinates of (x = 0.262, y = 0.280). When the diode was irradiated by a 365 nm UV-light (4 mW/cm2), the open-circuit voltage (Voc) of 1.2 V, short-circuit (Isc) of 0.065 mA/cm2, fill factor (FF) of 0.24 and power conversion efficiency of 0.47% have been determined, respectively. The generation mechanisms of white light and PV of the bi-functional diode were discussed as well.  相似文献   

18.
Using our approach previously reported, we have fabricated relatively large area micro-gated-field emission arrays with carbon nanotube (CNT) grown on Mo tips. By redesigning the device and fabrication processes, the percentage of single CNTs increased to about 50-70% with a substantial improvement in leakage current between gate and cathode and gate interceptive current. The I-V measurement of a 11000 cell array at a gate to cathode voltage of 92 V showed an anode current of 1.2 mA, corresponding to a current density of 0.57 A/cm2, with a gate current only 3.3% of the anode current.  相似文献   

19.
The forward bias current-voltage (I-V) characteristics of Al/p-Si (MS) Schottky diodes with native insulator layer were measured in the temperature range of 80-300 K. The obtained zero bias barrier height ΦB0(I-V), ideality factor (n) and series resistance (Rs) determined by using thermionic emission (TE) mechanism show strong temperature dependence. There is a linear correlation between the ΦB0(I-V) and n because of the inhomogeneties in the barrier heights (BHs). Calculated values from temperature dependent I-V data reveal an unusual behaviour such that the ΦB0 decreases, as the n and Rs values are increasing with decreasing absolute temperature, and these changes are more pronounced especially at low temperatures. Such temperature dependence of BH is contradictory with the reported negative temperature coefficient of the barrier height. In order to explain this behaviour we have reported a modification in the expression reverse saturation current Io including the n and the tunnelling factor (αΧ1/2δ) estimated to be 15.5. Therefore, corrected effective barrier height Φbef.(I-V) versus temperature has a negative temperature coefficients (α = −2.66 × 10−4 eV/K) and it is in good agreement with negative temperature coefficients (α = −4.73 × 10−4 eV/K) of Si band gap. In addition, the temperature dependent energy distribution of interface states density Nss profiles was obtained from the forward bias I-V measurements by taking into account the bias dependence of the Φe and n. The forward bias I-V characteristics confirm that the distribution of Nss, Rs and interfacial insulator layer are important parameters that the current conduction mechanism of MS Schottky diodes.  相似文献   

20.
The effect of Al mole fractions on the structural and electrical properties of AlxGa1−xN/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of AlxGa1−xN samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号