首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
应用化学沉淀法合成了3种普鲁士蓝类化合物NaxMyFe(CN)6(M=Fe,Co,Ni),并研究了以此类化合物作钠离子电池正极材料的可行性.XRD和SEM分析表明,合成的3种目标产物均具有典型的立方晶型结构,粒子尺寸为20~50 nm.循环伏安扫描和恒电流充放电测试表明,这类化合物均能实现可逆的钠离子嵌入-脱嵌反应,但不同的金属表现出不同的电化学性质.如M为Fe或Co,材料中的Fe(CN)64+和Fe2+/Co2+离子这两个电化学活性中心都能参与氧化还原反应,NaFeFe(CN)6和Na2CoFe(CN)6的首周可逆容量分别为113和120mAh.g-1,且循环性能比较稳定.由于这类结构中Ni离子不能参与氧化还原反应,Na2NiFe(CN)6的可逆容量仅为64 mAh.g-1,但循环性能非常优异.本工作的初步结果证明了普鲁士蓝类化合物具有良好的钠离子脱嵌能力,有望成为一类价格低廉、环境友好的钠离子电池正极材料.  相似文献   

2.
1997年Padhi~([1])研究了锂过渡金属磷酸盐系材料的合成和电化学性能,发现这种聚阴离子体橄榄石型LiFePO_4在0.05 mA·cm~(-2)充放电电流密度下,约3.5 V(vs.Li~+/Li)平台电位范围内可以得到100~110 mAh·g~(-1)的比容量,(其理论比容量170 mAh·g~(-1)),己接近当时商品化正极材料LiCoO_2的实际放电比容量,而且充放电曲线非常平坦,这一发现引起国际电化学界不少研究人员的注意~([2,3]).  相似文献   

3.
放电温度对LiNi3/8Co2/8Mn3/8O2电化学性能的影响   总被引:5,自引:0,他引:5  
采用X射线衍射(XRD)、X射线光电子能谱(XPS)、恒流充放电、循环伏安及交流阻抗法,研究了放电温度对LiNi3/8Co2/8Mn3/8O2的倍率特性、锂离子扩散及电荷传递的影响.结果表明, 提高放电温度可显著改善LiNi3/8Co2/8Mn3/8O2的放电容量与倍率放电性能.尽管温度升高使电荷传递活性与锂离子扩散速度都增加,但电荷传递活化能比锂离子扩散活化能大一倍多,表明电荷传递步骤是其电化学反应控制步骤.温度对其电荷传递的影响大于对锂离子扩散的影响.温度升高,电荷传递速率加快,电化学嵌入-迁出反应加速,是其放电容量与倍率放电特性显著改善的主要原因.  相似文献   

4.
以Na2CO3、(CH3CO2)2Mn.4H2O、Y2O3和CH3COOLi.2H2O为原料,采用高温固相法经过2次灼烧和水热离子交换法得到一系列钇掺杂的LiMn1-xYxO2(x:0.01,0.02,0.03,0.05)化合物。通过XRD、XPS、循环伏安及恒电流充放电测试技术,研究了钇掺杂离子对合成正极材料结构及电化学性能的影响。结果表明,所得产物均具有单斜层状结构。合适的钇掺杂可以起到扩展锂离子脱嵌通道和稳定骨架结构的作用,钇离子的引入部分取代原有的三价锰离子,由于钇离子的离子半径较三价锰离子大,因此稀土掺杂锰酸锂材料的晶胞参数比未掺杂材料大,在一定程度上扩充了锂离子迁移的三维通道,更有利于锂离子的嵌入与脱嵌,提高单斜层状LiMnO2材料的电化学循环可逆性及循环稳定性。通过对所得化合物进行了钇掺杂量及电化学性能的研究,得到性能比较优良的LiY0.021Mn0.979O2化合物,其首次放电比容量为125.7mA.h/g,100次循环以后,放电比容量达212.1mA.h/g,远高于未掺杂材料的放电容量138mA.h/g。交流阻抗测试结果表明,Y3+的掺入能降低材料的电化学反应阻抗和提高材料中Li+的扩散能力。  相似文献   

5.
富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性   总被引:1,自引:1,他引:0  
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   

6.
应用聚丙烯酸盐热解法合成掺杂Cr3+或Mg2+、Mn2+、Ni2+的LiFePO4正极材料,研究掺杂离子对目标化合物电化学性质的影响.XRD和SEM实验表明,该材料微米级颗粒是由约200nm的粒子团聚而成的,具有橄榄石型结构,且未出现杂质相.电化学测试表明,掺Cr3+的LiFePO4在高倍率(3C)放电下的首周放电容量为97mAh/g,相当于0.15C率容量的66%,其循环性能优异,充分显示离子掺杂能显著改善材料的高倍率放电性能和循环性能.  相似文献   

7.
Co-M(M=La,Ce, Fe,Mn, Cu,Cr)复合金属氧化物催化分解N2O   总被引:1,自引:0,他引:1  
薛莉  贺泓 《物理化学学报》2007,23(5):664-670
通过共沉淀法制备了一系列Co-M(M= La, Ce, Fe, Mn, Cu, Cr)复合金属氧化物及纯Co3O4催化剂, 考察了其催化分解N2O 的活性. 结果表明在研究的系列催化剂中, Co-Ce 复合氧化物催化剂具有最好的催化分解N2O的活性; 其活性与Ce/Co 摩尔比有直接的关系, 当Ce/Co 摩尔比为0.05 时(CoCe0.05 催化剂)催化活性最佳; 当有NO 和O2共存时, 可能在催化剂活性中心上形成表面硝酸盐或亚硝酸盐吸附物种而使其活性受到较大影响. 通过对Co-M 催化剂的XRD、BET、O2-TPD及H2-TPR 等表征结果的分析, 发现作为主要活性位的Co2+的氧化还原能力是影响催化剂活性的主要原因. 这是因为根据反应机理, N2O 的表面分解步骤与Co2+氧化成Co3+的能力相关, 而吸附氧的脱附与Co3+还原成Co2+的能力相关. 在所研究的催化剂中, 添加除CeO2之外的其它过渡金属氧化物时, 催化剂中Co3+/Co2+的氧化还原能力降低, 因此其催化性能降低. 另外, 添加不同过渡金属氧化物也改变了N2O 催化分解反应的速控步骤.  相似文献   

8.
应用高温固相合成法制备L i[N i0.475Mn0.475Co0.05]O2.XRD,SEM,循环伏安及充放电容量测试表明,在800℃下煅烧合成的样品具有较高的嵌锂容量和良好的循环稳定性,如在20 mA/g和2.3~4.6 V的电压范围内,其首次放电比容量为178.8 mAh/g,循环30周后放电比容量仍能达到150.2 mAh/g,容量损失16.0%.  相似文献   

9.
采用改进的固相法一步反应成功制备了掺杂Cr的系列正极材料Li[Mn1/3-x/3Ni1/3-x/3Co1/3-x/3Crx]O2(x=0, 0.015, 0.025, 0.050, 0.100),用XRD, SEM和充放电测试等考察了它们的物理性质和电化学性能.结果表明,所合成的正极材料具有O2层状结构,规则的形貌和均匀的粒径尺寸分布,其嵌锂脱锂均为一步机理.加入适量的Cr可提高该系列正极材料的电化学性能和循环稳定性.x=0.015时的正极材料电化学性能最佳,室温下其首次放电比容量为138.60 mAh·g-1,并且循环性能最好.  相似文献   

10.
LiNi(1/3)Mn(1/3)Co(1/3)O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi(1/3)Mn(1/3)Co(1/3)O2的表面形成了10nm厚的均匀Li4Mn5O(12)的包覆层;在循环100圈后,包覆后的LiNi(1/3)Mn(1/3)Co(1/3)O2仍具有179.5m Ah/g的放电比容量和88.6%容量保持率,明显高于未包覆的LiNi(1/3)Mn(1/3)Co(1/3)O2的78.3%容量保持率。因此,利用富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2为实现更高能量密度的锂离子电池提供了新的途径。  相似文献   

11.

In this study, we investigated the electrochemical intercalation of Ca2+ into graphite as an anode material for calcium-ion batteries (CIBs). The electrochemical intercalation of Ca2+ into a graphite electrode is possible when γ-butyrolactone (GBL) is utilized as a solvent, resulting in a reversible charge/discharge capacity. The GBL-based electrolyte allows a reversible redox reaction, thereby resulting in the intercalation and deintercalation of Ca2+ within the graphite electrode. Conversely, Ca2+ cannot be intercalated between the graphite layers in the ethylene carbonate–diethyl carbonate (EC–DEC)–based electrolyte. Analyses of the solution structures of both cases indicated that the interaction between the GBL solvent and Ca2+ was weak whereas that between the EC–DEC solvent and Ca2+ was strong. As a result of analyzing the surface of the negative electrode after charging and discharging from XPS, it was confirmed that a component that seems to be a solid electrolyte interphase (SEI) was confirmed in the graphite electrode using the GBL-based electrolyte.

  相似文献   

12.
采用高温固相法合成了NaxMnO2,并用X-射线衍射、X-射线光电子能谱、场发射扫描电镜、循环伏安、电化学阻抗谱和恒流充放电技术研究了钠锰比对材料的形态结构、电化学性能和钠离子脱嵌过程的影响. 结果表明,NaxMnO2 主要由Na0.7MnO2 和Na0.91MnO2 组成,且Na0.91MnO2 的量随着钠锰比的增加而增加. 随着钠锰比的增加,SEI 膜扩散、界面电化学反应和固相扩散的活化能先减少后增大,而材料的放电比容量则先增大后减少. 当钠锰比为0.80 时,合成的材料1C 倍率下首次放电比容量为152.8 mAh·g-1,50 次循环容量保持率为80.6%,5C 大倍率下放电比容量为88.3 mAh·g-1,表现出了良好的循环性能和倍率性,相应的SEI 膜扩散、界面电化学反应和固相扩散过程的活化能分别为68.23、40.07 和57.62 KJ·mol-1.  相似文献   

13.
The cathode in rechargeable lithium-ion batteries operates by conventional intercalation; Li+ is extracted from LiCoO2 on charging accompanied by oxidation of Co3+ to Co4+; the process is reversed on discharge. In contrast, Li+ may be extracted from Mn4+-based solids, e.g., Li2MnO3, without oxidation of Mn4+. A mechanism involving simultaneous Li and O removal is often proposed. Here, we demonstrate directly, by in situ differential electrochemical mass spectrometry (DEMS), that O2 is evolved from such Mn4+ -containing compounds, Li[Ni(0.2)Li(0.2)Mn(0.6)]O2, on charging and using powder neutron diffraction show that O loss from the surface is accompanied by diffusion of transition metal ions from surface to bulk where they occupy vacancies created by Li removal. The composition of the compound moves toward MO(2). Understanding such unconventional Li extraction is important because Li-Mn-Ni-O compounds, irrespective of whether they contain Co, can, after O loss, store 200 mAhg(-1) of charge compared with 140 mAhg(-1) for LiCoO(2).  相似文献   

14.
Synthesis and structural characterization of the first LiFeO2 compound with tetrahedrally coordinated Fe3+ is reported. When used as a positive intercalation electrode in a lithium cell, it can store charge of up to 120 mAhg(-1) at a rate of 100 mAg(-1). However, it converts to the defect spinel LiFe5O8 on cycling. By combining results from powder X-ray diffraction, differential electrochemical mass spectrometry, electrochemical cycling, and TG-MS, it is shown that such conversion, which involved oxygen loss, is not associated with direct O2 gas evolution but instead reaction with the electrolyte. We suggest that intercalation/deintercalation is accompanied by the exchange of Li+ by H+ in the material and subsequent loss of H2O, thus converting LiFeO2 to the defect spinel LiFe5O8 on cycling.  相似文献   

15.
This investigation examines the effect of alloying elements on the charge–discharge performance of LaNi3.6(Co+Mn+Al)1.4 electrodes in 7 M KOH electrolyte. The activation behavior and the effect of binder content were also examined. Both half-cell and full-cell systems were employed to evaluate the electrochemical performance. Experimental results indicated that a few cycles of charge–discharge at a rate of 150 mA/g in 7 M KOH electrolyte were sufficient to activate the freshly prepared LaNi3.6(Co+Mn+Al)1.4 electrodes. The amount of binder affected the activation behavior, the overvoltage for hydrogen ions reduction and the discharge capacity of the MmNi3.55Co0.75Mn0.4Al0.3 electrode. In the alloy of the LaNi3.6(Co+Mn+Al)1.4 electrodes, a high Co content helped to promote both the capacity at a relatively low discharging rate and the cyclic life. An increase of the Al content raised the discharge voltage and improved the high rate discharge capacity, but reduced the cyclic stability. The alloy with a high Mn content required the least cathodic polarization during charging but had the lowest discharge capacity at a rather high discharging rate.  相似文献   

16.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

17.
This work has initiated an investigation on the electrochemical behaviors and the structure changes of the composite electrode 0.3Li(2)MnO(3)·0.7LiMn(1/3)Ni(1/3)Co(1/3)O(2) when charged with different cut-off voltages. It is found that the charge cut-off voltages could not only affect the capacity property and coulombic efficiency, but also alter the electrode kinetics of the composite. As a consequence, the electrochemical activation of the composite electrode is highly dependent on the charge cut-off voltages: when the charge cut-off voltage is higher than 4.5 V, the inert component Li(2)MnO(3) in the composite electrode is completely activated. At the meanwhile, there occurred an irreversible oxygen loss during the initial charge process, which yielded a hollow sphere in the electrode. Regardless of charge voltages, Mn ions in the composite electrode were presented in an oxidation state of +4, while Co(2+) ions were detected at the surface of the electrode when cycled at low voltages. Ni ions in the composite could react with organic or inorganic species and then cover the surface of the cycled electrode.  相似文献   

18.
一种新型氧化还原电解液电化学电容器体系   总被引:1,自引:0,他引:1  
以含有Fe3+/Fe2+离子对的H2SO4溶液为电解液, 以多孔炭做电极材料, 就Fe3+/Fe2+离子对在多孔炭纳米孔隙中的电化学行为及准电容效应进行了探讨. 循环伏安测试结果表明, Fe3+/Fe2+离子对在多孔炭电极纳米孔隙中发生了可逆的电化学反应. 恒流充放电结果发现, 加入Fe3+/Fe2+使得充放曲线出现对称的充放电平台, 有效地提高了电化学电容器(EC)的电能存储容量, 其单电极比电容最高达174 mAh•g−1, 比单纯的H2SO4电解液的比电容高109 mAh•g−1, 且有着良好的循环稳定性. 根据实验现象及结果, 探讨了Fe3+/Fe2+离子对在EC电极上的充放电机理, 并提出了一种新的概念——氧化还原电解液电化学电容器.  相似文献   

19.
By dissolving crystalline V2O5 in hydrogen peroxide and drying at elevated temperature, the V2O5 xerogel was obtained. Its electrochemical behaviour was examined in aqueous solution of LiNO3 by both cyclic voltammetry and galvanostatic charging/discharging cycling. Peak-to-peak potential separation observed at the cyclovoltammograms indicated fast Li+ intercalation/deintercalation reactions. Initial discharge capacity amounted to 69 mAhg?1, and after 100 charging/discharging cycles, capacity fade amounted to 11% only. This presents a remarkable improvement in comparison with the behaviour of crystalline, vanadium oxide based, lithium intercalates in aqueous electrolytes.  相似文献   

20.
In situ hard X-ray absorption spectroscopy (XAS) at metal K-edges and soft XAS at O K-edge and metal L-edges have been carried out during the first charging process for the layered Li1-xCo1/3Ni1/3Mn1/3O2 cathode material. The metal K-edge XANES results show that the major charge compensation at the metal site during Li-ion deintercalation is achieved by the oxidation of Ni2+ ions, while the manganese ions and the cobalt ions remain mostly unchanged in the Mn4+ and Co3+ state. These conclusions are in good agreement with the results of the metal K-edge EXAFS data. Metal L-edge XAS results at different charge states in both the FY and PEY modes show that, unlike Mn and Co ions, Ni ions at the surface are oxidized to Ni3+ during charge, whereas Ni ions in the bulk are further oxidized to Ni4+ during charge. From the observation of O K-edge XAS results, we can conclude that a large portion of the charge compensation during Li-ion deintercalation is achieved in the oxygen site. By comparison to our earlier results on the Li1-xNi0.5Mn0.5O2 system, we attribute the active participation of oxygen in the redox process in Li1-xCo1/3Ni1/3Mn1/3O2 to be related to the presence of Co in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号