首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Carbon monoxide (CO) is a very poisonous gas present in the atmosphere. It has significant effects on human beings, animals, plants and the climate. Automobile vehicle exhaust contributes 64% of the CO pollution in urban areas. To control this exhaust pollution, various types of catalysts in catalytic converters have been investigated. Increasing costs of noble metals as a catalyst in automobile vehicles motivates the investigation of material that can be substituted for noble metals. Among the non-noble metals, copper (Cu) is found to be the most capable and highly active catalyst for CO oxidation, compared to precious metal catalysts. Lower cost, easy availability and advance preparation conditions with stabilizers, promoters and so on, make Cu a good choice as an auto exhaust purification catalyst. The oxidation of CO proceeds very quickly over Cu°, followed by Cu+ and Cu2+. The Cu2O catalyst is more active in an O2-rich atmosphere than in O2-lean conditions. The reduced species of copper (Cu0, Cu+) are essential for better CO oxidation but smaller Cu particles could be less active than the higher ones. There is a great deal of research available on the Cu catalyst for CO oxidation, but there is a gap in the literature for a review article individually applied to the Cu catalyst for CO oxidation. To fill this gap, the present review updates information on Cu catalysts in the purification of exhaust gases.  相似文献   

2.
An area‐selective atomic layer deposition (AS‐ALD) method is described to construct oxide nanotraps to anchor Pt nanoparticles (NPs) on Al2O3 supports. The as‐synthesized catalysts have exhibited outstanding room‐temperature CO oxidation activity, with a significantly lowered apparent activation energy (ca. 22.17 kJ mol−1) that is half that of pure Pt catalyst with the same loading. Furthermore, the structure shows excellent sintering resistance with the high catalytic activity retention up to 600 °C calcination. The key feature of the oxide nanotraps lies in its ability to anchor Pt NPs via strong metal–oxide interactions while still leaving active metal facets exposed. Our reported method for forming such oxide structure with nanotraps shows great potential for the simultaneous enhancement of thermal stability and activity of precious metal NPs.  相似文献   

3.
采用NaBH4还原法制备了XC-72碳黑负载的Pt电催化剂,并在化学还原后用H2O2处理部分催化剂以改变Pt的氧化状态,以期改善Pt活性中心上水的离解而提高催化活性.X射线光电子能谱结果表明,经H2O2处理的催化剂含有较多的氧化态Pt.通过循环伏安法和记时电流法考察了经处理和未经处理的催化剂在酸性条件下的甲醇氧化的催化...  相似文献   

4.
H2‐promoted catalytic activity of oxide‐supported metal catalysts in low‐temperature CO oxidation is of great interest but its origin remains unknown. Employing an FeO(111)/Pt(111) inverse model catalyst, we herewith report direct experimental evidence for the spillover of H(a) adatoms on the Pt surface formed by H2 dissociation to the Pt?FeO interface to form hydroxyl groups that facilely oxidize CO(a) on the neighboring Pt surface to produce CO2. Hydroxyl groups and coadsorbed water play a crucial role in the occurrence of hydrogen spillover. These results unambiguously identify the occurrence of hydrogen spillover from the metal surface to the noble metal/metal oxide interface and the resultant enhanced catalytic activity of the metal/oxide interface in low‐temperature CO oxidation, which provides a molecular‐level understanding of both H2‐promoted catalytic activity of metal/oxide ensembles in low‐temperature CO oxidation and hydrogen spillover.  相似文献   

5.
The rhenium- and ruthenium-containing catalysts are active in the oxidation of CH x and CO and in the reduction of NO x . Comparative testing of catalyst samples under laboratory conditions and on an engine stand demonstrated that these catalysts outperform the known commercial catalysts in the neutralization of exhaust gas from automotive gasoline engines. It is, therefore, possible to completely replace expensive Rh and partially replace Pt and Pd with cheaper components—Re and Rh—in the manufacturing of catalytic converters.  相似文献   

6.
The aim of this research was to study the efficiency of polyvinyl alcohol (PVA)-modified graphene oxide (GO) as a supporting material for catalysts that oxidize formic acid. The active metal catalysts (e.g., Pt and Pd) were electrodeposited on PVA/GO surfaces. The morphologies of the prepared catalysts were characterized by scanning electron microscopy and transmission electron microscopy, while their chemical compositions were identified by X-ray diffraction and X-ray photoelectron spectroscopy. The results show that compared with the other catalysts on GO, the prepared active PtPd alloy catalyst nanoparticles with 11.49–20.73 nm sizes were well dispersed on the PVA/GO surfaces. Electrochemical results indicate that the activities of the catalysts with PVA provided a higher current density than that of the catalysts without PVA. The bimetallic 3Pt3Pd/PVA/GO catalyst showed the greatest catalytic activity, stability, and CO oxidation when compared to those of other catalysts. The electronic, morphological, and structural properties promote the mass-charge transfer through the interaction. These results indicate that the PVA-modified GO provides a suitable site for active bimetallic catalyst surfaces, resulting in excellent formic acid oxidation and high CO elimination. The 3Pt3Pd/PVA/GO electrocatalyst is promising for enhancing formic acid oxidation.  相似文献   

7.
曹蓉  汪梦雅  夏杰桢  吴琪 《化学通报》2022,85(5):547-552
燃料电池具有燃料多样性、噪声低、对环境污染小等优势,近年来备受研究者关注。然而,电池中的贵金属催化剂极易被少量的CO毒化,成为制约其商业化的一大障碍。因此,设计出高性能的催化剂对于推动燃料电池的发展十分关键。本文综述了燃料电池中铂(Pt)基催化剂对CO催化氧化的研究现状,首先探讨了CO催化氧化机理以及CO在Pt金属表面化学吸附的机理,其次详细介绍了Pt负载型催化剂、双金属催化剂以及助催化剂在催化反应中的不同作用,然后简单分析了影响Pt基催化剂性能的其他因素。最后,对燃料电池中Pt基催化剂的研究方向作了进一步的展望,旨在为燃料电池中CO催化氧化的发展开拓新思路。  相似文献   

8.
利用沉积沉淀法制备了Pt/TiO2催化剂, 将其在不同温度下焙烧, 以得到不同颗粒尺寸的Pt. 并将这些样品用于CO催化氧化反应以及反应动力学研究. 结果表明: 焙烧温度对催化剂有明显影响, Pt 颗粒尺寸随着焙烧温度的升高而增加; 与此同时, CO催化活性随焙烧温度的升高呈先增加后降低的趋势, 其中, 400℃焙烧的样品表现出最高的催化活性. 反应动力学结果表明, 催化剂上CO氧化反应表观速率方程为r=5.4×10-7pCO0.17pO20.36,说明在该催化剂上CO氧化遵循Langmuir-Hinshelwood机理. 同时, 对催化剂进行了CO化学吸附红外光谱和O2化学吸附表征. 结果表明, 随着焙烧温度的升高, 催化剂上CO和O2吸附量均呈现先升高后降低的趋势, 这与反应结果和反应动力学方程一致, 说明反应受到催化剂表面上CO和O2吸附浓度的影响. 而在400℃焙烧的催化剂上, CO和O2吸附量均最高, 因此其反应活性也最好. 这可能是焙烧过程影响了Pt 和TiO2之间的相互作用引起的.  相似文献   

9.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

10.
林坚  王晓东  张涛 《催化学报》2016,(11):1805-1813
CO氧化可能是多相催化领域最常见的反应,它不仅能作为探针反应研究催化剂结构、反应活性位等,而且在诸多实际过程如空气净化、汽车尾气污染物控制、燃料电池所用氢源净化等扮演重要角色.最早的 CO氧化催化剂为霍加拉特剂,其组分主要为 CuO与 MnO2混合氧化物,然而在实际应用过程中存在低温活性低、吸湿易失活等缺点.1987年, Haruta等发现湿化学法制备的氧化物负载 Au催化剂表现出非常高的低温 CO氧化活性及耐水稳定性,其 Au粒子以纳米尺度分散,进而引发了催化研究领域的“淘金热”及纳米催化研究热潮.而 CO氧化通常作为考察 Au催化剂结构性质的探针反应,也成为考核其它金属催化剂是否具有高活性的判据之一. Pt族金属上 CO氧化反应从 Langmuir等研究开始至今已有100多年,然而低温下该金属催化剂活性与 Au催化剂相比要低一个数量级.本质原因为 Pt族金属上 CO吸附较强, O2吸附与活化受到抑制,而该步骤被认为是 CO氧化的速控步,因而表现出较低的催化活性.通常 Pt族金属催化剂需要100oC以上 CO才能脱附, O2进而得以吸附.目前研究人员采取多种策略,其基本原则为削弱 Pt族金属上 CO吸附强度或者提供其它活性位供 O2吸附与活化.本综述将概括近十年来Pt族金属催化剂 CO氧化研究进展,主要总结室温甚至超低温条件下的研究成果.高活性 CO氧化催化剂主要是通过采用可还原氧化物为载体或助剂,或者改变催化剂表面性质如使表面富 OH基物种来形成. Au催化剂的研究发现,改变金属粒子尺寸极有可能获得不同寻常的催化性能,而常规的 Pt族金属催化剂研究主要是在纳米尺度.近期人们发现逐渐减小 Pt族金属粒子尺寸,从纳米到亚纳米甚至单原子时,其电荷状态逐渐呈正价形式,这有利于削弱其 CO吸附强度.此外,可通过增强金属载体间的相互作用,改变金属载体接触方式,如从核壳到交叉结联结构,构筑出更多的金属载体界面,使得 O2更容易吸附与活化或稳定更多的 OH基物种进而在此界面与吸附的 CO反应.伴随着表征技术的发展, CO氧化机理的认识也更加深入,这给催化剂的设计带来更多新的思路.(1)改变 CO吸附活化位,将 CO吸附活化位从金属转移到载体上,从而大大降低 CO吸附强度,活化的 CO物种在反应过程中容易溢流到金属载体界面处,这甚至有利于超低温度下(–100oC左右) CO氧化.(2)改变 O2活化形式. O2通常在 Pt族金属上容易以解离氧原子形式存在,通过改变载体、金属载体界面性质使得 O2以分子氧形式活化,如形成超氧或过氧物种,这有利于降低 CO氧化的活化能垒,进而提高其低温甚至超低温下 CO氧化活性.今后,设计并合成出在超低温度下能够氧化 CO的 Pt族金属催化剂将成为 CO氧化催化剂研究的重要方向之一.  相似文献   

11.
We show that Pt nanoparticles synthesized on oxide nanocatalysts exhibit catalytic activity enhancement depending on the type of the oxide support. To synthesize the Pt/oxide nanocatalysts, we employed a versatile synthesis method using Pt nanoparticles (NPs) supported on various metal oxides (i.e., SiO2, CeO2, Al2O3, and FeAl2O4) utilizing ultrasonic spray pyrolysis. Catalytic CO oxidation was carried out on these catalysts, and it was found that the catalytic activity of the Pt NPs varied depending on the supporting oxide. While Pt/CeO2 exhibited the highest metal dispersion and active surface area, Pt/FeAl2O4 exhibited the lowest active surface area. Among the Pt/oxide nanocatalysts, Pt NPs supported on CeO2 showed the highest catalytic activity. We ascribe the enhancement in turnover frequency of the Pt/CeO2 nanocatalysts to strong metal–support interactions due to charge transport between the metal catalysts and the oxide support. Such Pt/oxide nanocatalysts synthesized via spray pyrolysis offer potential possibilities for large-scale synthesis of tailored catalytic systems for technologically relevant applications.  相似文献   

12.
The effect of Pt additives on the catalytic characteristics of a Pd-containing catalyst based on manganese hexaaluminate was studied. It was found that the bimetallic PtPd-containing catalysts based on MnLaAl11O19 with the Pt/Pd atomic ratio smaller than 0.25 exhibited a comparable or somewhat smaller activity in the methane oxidation, but their stability at elevated temperatures and gas flow rates was higher than that of the Pd-based catalyst. The state of the active constituent of the resulting catalysts was investigated. Main correlations between the state of the active component and the catalytic activity were revealed.  相似文献   

13.
宋爱英  吕功煊 《催化学报》2014,35(7):1212-1223
采用浸渍法制备了M/Al2O3-CeO2(M=Pt-Ru,Ru,Pt)催化剂,并将其用于甲胺的催化湿式氧化反应(CWAO).结果表明,Pt-Ru/Al2O3-CeO2具有最佳活性和选择性.运用程序升温还原、X射线光电子能谱、X射线衍射、透射电子显微镜、N2吸附和CO化学吸附等技术对催化剂的物化性质进行了表征.Pt组分的引入可有效提高双金属催化剂活性组分的分散度,从而明显提高了其催化性能.升降温过程中总有机碳(TOC)转化率与N2选择性迟滞效应表明,甲胺CWAO遵循化学吸附-脱附机理.  相似文献   

14.
Supported Pt and Pd are most commonly used for oxidation catalysts. They have similar and different characteristics for deactivation factors. The catalytic activity of Pt and Pd catalysts supported on ??-Al2O3 was studied in the presence and absence of H2O and SO2 during CO oxidation under simulated conditions of diesel exhaust gas. Without the addition of H2O and SO2 to the feed gas, Pd/Al2O3 had a superior catalytic activity compared to Pt/Al2O3. The addition of H2O to the feed gas strongly and negligibly affected the activity of Pd and Pt, respectively, while the addition of SO2 to the feed gas had a strong poisoning effect on the catalytic activity of both Pt and Pd catalysts. Although being the most active, Pd catalysts exhibited a strong sensitivity to water and sulfur-containing compounds. Fe was added to the Pt and Pd catalysts to introduce sulfur resistance. The addition of Fe enhanced the activity of the catalysts by suppressing the phase transition of Al2O3 to Al2(SO4)3 and by hindering metal sintering.  相似文献   

15.
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub‐nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh‐based catalysts and comparable to the well‐known Au/TiO2 for CO oxidation. The specific size range of 0.4–0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh–TiO2 interface in a form of Rh?O?O?Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.  相似文献   

16.
我们研究了4种负载型Pt催化剂(1Pt/NiO、1Pt/FeOx、1Pt/Co3O4和Pt/CeO2)上不同反应条件下CO氧化活性及抗H2O和CO2性能.发现反应气氛中CO2的加入与CO形成了竞争吸附,并在催化剂表面形成了碳酸盐物种堵塞了活性位,从而导致催化剂失活.反应气氛中H2O的加入对1Pt/CeO2催化剂的活性有所抑制,但对1Pt/FeOx、1Pt/NiO和1Pt/Co3O4催化剂的活性却有促进作用.在1Pt/FeOx和1Pt/CeO2催化剂上的分步反应实验和动力学研究表明,尽管H2O的加入在两种催化剂上均与CO形成了竞争吸附,但在1Pt/FeOx催化剂上H2O在载体表面解离形成的羟基更易与CO反应,开辟了新的反应途径,从而提高了反应性能.此外,H2O的加入能有效分解该催化剂上的碳酸盐物种,从而保持了其稳定性.  相似文献   

17.
研究了Ce改性的Pt/γ-AlO3对于富氢气氛下CO选择氧化反应的催化行为考察了制备条件(共沉积沉淀法、分步沉积沉淀法以及沉积沉淀温度)对催化活性的影响.结果表明,在80℃时用共沉积沉淀方法制备的催化剂Pt/γ-AlO3-CP-80对CO氧化反应表现出良好的活性和选择性,CO转化率在120℃时可以达到85%.利用氢气程序升温还原和原位漫反射红外光谱对不同条件下制备的催化剂进行了表征,分析了Cc的促进作用.  相似文献   

18.
制备了氧化铝、铈锆固溶体复合氧化物负载铂、钯的双金属催化剂Pt-Pd/ Ce0.3Zr0.7O2-Al2O3,并添加3% ZrO2助剂改性,用于柴油车尾气中CO、HC和NO的催化氧化,其中贵金属负载量仅为0.68 wt%。考察了制备过程中焙烧温度对催化剂性能的影响。催化剂活性评价结果表明,与未添加ZrO2的催化剂比较。添加ZrO2明显提高了催化剂的低温氧化活性,而且焙烧温度对催化剂的氧化性能有较大影响。焙烧温度为800 ?C时,CO和C3H6的起燃温度最低,分别为168、189 ?C,焙烧温度为700 ?C时,NO转化为NO2的转化率最高,最大转化率为36%,具有较好的热稳定性。通过XRD、N2吸附-脱附、CO化学吸附、XPS、H2-TPR等表征手段考察了催化剂物理化学性质随焙烧温度的变化情况,并分析了与催化剂活性之间的关系,得到贵金属分散度、表面化学吸附氧含量、催化剂的还原性质对氧化性能有重要影响,发挥协同作用。进而可以通过优化焙烧温度提升柴油车氧化催化剂性能,对提高工业应用柴油车尾气后处理系统的净化效率有重要意义。  相似文献   

19.
Various Pt catalysts (Pt/ZrO2, Pt/CeO2, Pt/CeZrO, Pt/WO3/ZrO2 and Pt/WO3/CeZrO) were prepared and characterized, and their catalytic reduction reactions of NO by CO, with or without the presence of excess oxygen, were investigated. The results of temperature-programmed experiments showed that CO could be easily oxidized over Pt/CeO2 and Pt/CeZrO while the introduction of WO3 into the catalyst (Pt/WO3/CeZrO) inhibited the reduction of catalyst surface; NO could not dissociate over those catalysts in oxidized state but after CO reduction at a low temperature, NO dissociation took place only over Pt/CeO2 and Pt/CeZrO catalysts. For NO + CO reaction, those easily reduced catalysts Pt/CeO2 and Pt/CeZrO exhibited better catalytic performances, and NO could be rapidly converted below 350 °C. For the reaction with the presence of excess O2, the NO conversions were significantly inhibited, but better NO conversions were obtained over the tungstate-contained catalysts when compared with Pt/CeO2 and Pt/CeZrO. The higher activities of Pt/W–Ce–Zr catalysts were attributed to their high acidities.  相似文献   

20.
The catalytic activity of perovskites MIMIIO3 (MI=La; MII=Co, Mn, Cr, Al, Ni, and V) and MICoO3 (M=Y, Nd, Sm, and Er) in the oxidation of CO, propylene, and ethylbenzene was investigated. The highest activity was observed for the MICoO3 catalysts with perfect perovskite structure. The nature of the rare-earth element has no influence on the catalytic activity. Deformation of the octahedral coordination of the metal was found for the less active catalysts. The interaction of gases (CO, CO+air) with the catalyst surface was investigated. The more active catalysts adsorb a greater amount of O2, and the adsorption occurs in the temperature region of the oxidation reaction. The activities of the perovskite- and spinel-type catalysts were compared under similar conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 698–701, April, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号